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Abstract. Improvement in information retrieval systems is largely dependent on
the ability to evaluate them. In order to assess the effectiveness of a retrieval sys-
tem, test collections are needed. In traditional approaches users or hired evalua-
tors provide manual assessments of relevance. However this does not scale with
the complexity and heterogeneity of available digital information. This paper pro-
poses to use topic ontologies and semantic similarity data to alleviate the efforts
needed by human assessors to evaluate the rapidly expanding set of competing
information retrieval methods. After providing experimental evidence support-
ing the validity of our approach we illustrate its application with an example in
which the proposed evaluation procedure is used to assess the effectiveness of
topical retrieval systems.
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1 Introduction

Building test collections is a crucial aspect of information retrieval experimentation.
The predominant approach used for the evaluation of information retrieval systems,
first introduced in the Cranfield experiments [9], requires a collection of documents,
a set of topics or queries, and a set of relevance judgments created by human asses-
sors who mark the documents as relevant or irrelevant to a particular topic or query.
However, reading large sets of document collections and judging them is expensive, es-
pecially when these documents cover diverse topics. In light of this difficulty a number
of frameworks for automatic or semiautomatic evaluation have been proposed.

A common approach that has been applied in automatic evaluations is based on the
use of pseudo-relevance judgments automatically computed from the retrieved docu-
ments themselves. A simple framework based on these ideas is the one proposed in [14].
In this approach the vector space model is used to represent queries and results. Then,
the relevance of each result is estimated based on the similarity between the query vec-
tor and the result vector. Another approach for automatic evaluation uses a list of terms
that are believed to be relevant to a query (onTopiclist) and a list of irrelevant terms
(offTopiclist) [3]. This evaluation method scores every resultd by considering the ap-
pearances ofonTopicandoffTopic terms ind. The authors show that their method is
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highly correlated with official TREC collections. Click-through data have also been ex-
ploited to assess the effectiveness of retrieval systems [16]. However, studies suggest
that there is a bias inherent in this data: users tend to to click on highly ranked docu-
ments regardless of their quality [6].

Editor-driven topic ontologies such as ODP1 (Open Directory Project) have enabled
the design of automatic evaluation frameworks. In [5] the ODP ontology is used to find
sets of pseudo-relevant documents assuming that entries are relevant to a given query
if their editor-entered titles match the query. Additionally, all entries in a leaf-level tax-
onomy category are relevant to a given query if the category title matches the query.
Haveliwala et al. [12] defines a partial ordering on documents from the ODP ontology
based on the ODP hierarchical structure. The inferred ordering is then used as a pre-
compiled test collection to evaluate several strategies for similarity search on the Web.
Menczer adapted Lin’s information theoretic measure of similarity [15] and computed
it over a large number of pairs of pages from ODP [23]. Lin’s measure of similarity
has several desirable properties and a solid theoretical justification. However, as it was
the case for Haveliwala et al.’s ordering, the proposed measure is defined only in terms
of the hierarchical component of the ODP ontology and fails to capture many seman-
tic relationships induced by the ontology’s non-hierarchical components (symbolic and
related links). As a result, according to this measure, the similarity between pages in
topics that belong to different top-level categories is zero even if the topics are clearly
related. This yielded an unreliable picture when all topics were considered.

In light of this limitation Maguitman et al. [20] proposed an information theoretic
measure of semantic similarity that generalizes Lin’s tree-based similarity to the case
of a graph. This measure of similarity can be applied to objects stored in the nodes
of arbitrary graphs, in particular topical ontologies that combine hierarchical and non-
hierarchical components such as Yahoo!, ODP and their derivatives. Therefore, it can
be usefully exploited to derive semantic relationships between millions of Web pages
stored in these topical ontologies, giving way to the design of more precise automatic
evaluation framework than those that are based only on the hierarchical component of
these ontologies.

The goal of this paper is to further evaluate this graph-based information theoretic
measure of semantic similarity and to illustrate its application in the evaluation of topi-
cal search systems.

2 Topic Ontologies and Semantic Similarity

Web topic ontologies are means of classifying Web pages based on their content. In
these ontologies, topics are typically organized in a hierarchical scheme in such a way
that more specific topics are part of more general ones. In addition, it is possible to
include cross-references to link different topics in a non-hierarchical scheme. The ODP
ontology is the largest human-edited directory of the Web. It classifies millions of pages
into a topical ontology combining a hierarchical and non-hierarchical scheme. This
topical directory can be used to measure semantic relationships among massive numbers
of pairs of Web pages or topics.

1 http://dmoz.org.
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Many measures have been developed to estimate semantic similarity in a network
representation. Early proposals have used path distances between the nodes in the net-
work (e.g. [25]). These frameworks are based on the premise that the stronger the se-
mantic relationship of two objects, the closer they will be in the network representation.
However, as it has been discussed by a number of sources, issues arise when attempting
to apply distance-based schemes for measuring object similarities in certain classes of
networks where links may not represent uniform distances(e.g., [26]).

TOP

ARTS HOME SPORTS

GARDENS

JAPANESE
GARDENS

SPECIALIZED 
TECHNIQUES

BONSAI AND 
SUISEKI

COOKING

….. …..

…..

Fig. 1.A portion of a topic taxonomy.

To illustrate the limitations of the distance-based schemes take the ODP sample
shown in figure 1. While the edge-based distance between the topics JAPANESE GAR-
DENS and COOKING is the same as the one between the topics JAPANESE GARDENS

and BONSAI AND SUISEKI, it is clear that the semantic relationship between the second
pair is stronger than the semantic relationship between the first pair. The reason for this
stronger semantic relationship lays in the fact that the lowest common ancestor of the
topics JAPANESEGARDENSand BONSAI AND SUISEKI is the topic GARDENS, a more
specific topic than HOME, which is the lowest common ancestor of the topics JAPANESE

GARDENS and COOKING. To address the issue of specificity, some proposals estimate
semantic similarity in a taxonomy based on the notion of information content [26, 15].
In information theory [10], the information content of a class or topict is measured by
the negative log likelihood,− log Pr[t], wherePr[t] represents the prior probability that
any object is classified under topict. In practicePr[t] can be computed for every topic
t in a taxonomy by counting the fraction of objects stored in the subtree rooted att (i.e.,
objects stored in nodet and its descendants) out of all the objects in the taxonomy.

According to Lin’s proposal [15], the semantic similarity between two topicst1 and
t2 in a taxonomy is measured as the ratio between the meaning of their lowest common
ancestor and their individual meanings. This can be expressed as follows:

σT
s (t1, t2) =

2 · log Pr[t0(t1, t2)]
log Pr[t1] + log Pr[t2]

wheret0(t1, t2) is the lowest common ancestor topic fort1 andt2 in the tree. Given a
documentd classified in a topic taxonomy, we usetopic(d) to refer to the topic node
containingd. Given two documentsd1 andd2 in a topic taxonomy the semantic simi-
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larity between them is estimated asσT
s (topic(d1), topic(d2)). To simplify notation, we

useσT
s (d1, d2) as a shorthand forσT

s (topic(d1), topic(d2)).
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Fig. 2. Illustration of a simple topic ontology.

An important distinction between taxonomies and general topic ontologies such
as ODP is that edges in a taxonomy are all “is-a” links, while in ODP edges can have
diverse types such as “is-a”, “symbolic” and “related”. The existence of “symbolic” and
“related” edges should be given due consideration as they have important implication in
the semantic relationships between the topics linked by them. Consider for example the
portion of the ODP shown in figure 2. If only the taxonomy edges are considered, then
the semantic similarity between the topics BONSAI AND SUISEKI and BONSAI would
be zero, which does not reflect the strong semantic relationship existing between both
topics.

To address this limitation Maguitman et al. [20] defined a graph-based semantic
similarity measureσG

s that generalizes Lin’s tree-based similarityσT
s to exploit both

the hierarchical and non-hierarchical components of an ontology. In the following we
recall the definitions that are necessary to characterizeσG

s .

2.1 Defining and Computing a Graph-Based Semantic Similarity Measure

A topic ontology graph is a graph of nodes representing topics. Each node contains ob-
jects representing documents (Web pages). An ontology graph has a hierarchical (tree)
component made by “is-a” links, and a non-hierarchical components made by cross
links of different types.

For example, the ODP ontology is a directed graphG = (V,E) where:
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– V is a set of nodes, representing topics containing documents;
– E is a set of edges between nodes inV , partitioned into three subsetsT , S andR,

such that:
• T corresponds to the hierarchical component of the ontology,
• S corresponds to the non-hierarchical component made of “symbolic” cross-

links,
• R corresponds to the non-hierarchical component made of “related” cross-

links.

In addition, each nodet ∈ V contains a set of objects. We use|t| to refer to the number
of objects stored in nodet.

The extension ofσT
s to an ontology graph raises several questions: (1) how to deal

with edges of diverse type in an ontology, (2) how to find the most specific common
ancestor of a pair of topics, and (3) how to extend the definition of subtree rooted at a
topic for the ontology case.

Different types of edges have different meanings and should be used accordingly.
One way to distinguish the role of different edges is to assign them weights, and to
vary these weights according to the edge’s type. The weightwij ∈ [0, 1] for an edge
between topicti andtj can be interpreted as an explicit measure of the degree of mem-
bership oftj in the family of topics rooted atti. The weight setting we have adopted
for the edges in the ODP graph is as follows:wij = α for (i, j) ∈ T , wij = β
for (i, j) ∈ S, andwij = γ for (i, j) ∈ R. We setα = β = 1 because symbolic
links seem to be treated as first-class taxonomy (“is-a”) links in the ODP Web interface.
Since duplication of URLs is disallowed, symbolic links are a way to represent multiple
memberships, for example the fact that the pages in topic SHOPPING/HOME AND GAR-
DEN/PLANTS/TREES/BONSAI also belong to topic HOME/GARDENS/SPECIALIZED

TECHNIQUES/BONSAI AND SUISEKI. On the other hand, we setγ = 0.5 because re-
lated links are treated differently in the ODP Web interface, labeled as “see also” topics.
Intuitively the semantic relationship is weaker. Different weighting schemes could be
explored.

As a starting point, letwij > 0 if and only if there is an edge of some type between
topicsti andtj . However, to estimate topic membership, transitive relations between
edges should also be considered. Letti↓be the family of topicstj such that there is a
direct path in the graphG from ti to tj , where at most one edge fromS orR participates
in the path. We refer toti↓as theconeof topicti. Because edges may be associated with
different weights, different topicstj can have different degree of membership inti↓.

In order to make the implicit membership relations explicit, we represent the graph
structure by means of adjacency matrices and apply a number of operations to them. A
matrixT is used to represent the hierarchical structure of an ontology. MatrixT codifies
edges inT and is defined so thatTij = α if (i, j) ∈ T andSij = 0 otherwise. We use
T with 1s on the diagonal (i.e.,Sii = 01 for all i). Additional adjacency matrices are
used to represent the non-hierarchical components of an ontology. For the case of the
ODP graph, a matrixS is defined so thatSij = β if (i, j) ∈ S andSij = 0 otherwise.
A matrix R is defined analogously, asRij = γ if (i, j) ∈ R andRij = 0 otherwise.
Consider the operation∨ on matrices, defined as[A ∨ B]ij = max(Aij , Bij), and let
G = T ∨ S ∨R. Matrix G is the adjacency matrix of graphG augmented with 1s on
the diagonal.
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We will use the MaxProduct fuzzy composition function� [13] defined on matrices
as follows:2

[A�B]ij = max
k

(Aik ·Bkj).

Let T(0) = T andT(r+1) = T(0) �T(r). We define the closure ofT, denotedT+ as
follows:

T+ = lim
r→∞

T(r).

In this matrix,T+
ij = 1 if tj ∈ subtree(ti), andT+

ij = 0 otherwise.
Finally, we compute the matrixW as follows:

W = T+ �G�T+.

The elementWij can be interpreted as a fuzzy membership value of topictj in the
coneti↓, therefore we refer toW as thefuzzy membership matrixof G.

The semantic similarity between two topicst1 andt2 in an ontology graph can now
be estimated as follows:

σG
s (t1, t2) = max

k

2 ·min (Wk1,Wk2) · log Pr[tk]
log(Pr[t1|tk]·Pr[tk]) + log(Pr[t2|tk]·Pr[tk])

.

The probabilityPr[tk] represents the prior probability that any document is classified
under topictk and is computed as:

Pr[tk] =

∑
tj∈V (Wkj · |tj |)

|U |
,

where|U | is the number of documents in the ontology. The posterior probabilityPr[ti|tk]
represents the probability that any document will be classified under topicti given that
it is classified undertk, and is computed as follows:

Pr[ti|tk] =

∑
tj∈V (min(Wij ,Wkj) · |tj |)∑

tj∈V (Wkj · |tj |)
.

The proposed definition ofσG
s is a generalization ofσT

s . In the special case when
G is a tree (i.e.,S = R = ∅), thenti↓ is equal tosubtree(ti), the topic subtree rooted
at ti, and all topicst ∈ subtree(ti) belong toti↓with a degree of membership equal
to 1. If tk is an ancestor oft1 andt2 in a taxonomy, thenmin(Wk1,Wk2) = 1 and
Pr[ti|tk] · Pr[tk] = Pr[ti] for i = 1, 2. In addition, if there are no cross-links inG,
the topictk whose indexk maximizesσG

s (t1, t2) corresponds to the lowest common
ancestor oft1 andt2.

The proposed semantic similarity measureσG
s as well as Lin’s similarity measure

σT
s was applied to the ODP ontology and computed for more than half million topic

nodes. As a result, we obtained the semantic similarity valuesσG
s andσT

s for more than
1.26 × 1012 pairs of pages.3 We found out thatσG

s andσT
s are moderately correlated

2 With our choice of weights, MaxProduct composition is equivalent to MaxMin composition.
3 This required a computational effort of approximately 5,000 CPU hours using 20 nodes of a

IU’s AVIDD super-computing facility, resulting in 1 TB of data.
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(Pearson coefficientrP = 0.51). Further analysis indicated that the two measures give
us estimates of semantic similarity that are quantitatively and qualitatively different
(see [20] for details).

3 Validation
In [20] we reported a human-subject experiment to compare the proposed semantic
similarity measureσG

s against Lin’s measureσT
s . The goal of that experiment was to

contrast the predictions of the two semantic similarity measures against human judg-
ments of Web pages relatedness. To test which of the two method was a better predictor
of subjects’ judgments of Web page similarity we considered the selections made by
each of the human-subjects and computed the percentage of correct predictions made
by the two methods. MeasureσG

s was a better estimate of human-predictions in 84.65%
of the cases whileσT

s was a better predictor in 5.70% of the cases (the remaining 9.65%
of the cases were undecided).

AlthoughσG
s significantly improves the predictions made byσT

s , the study outlined
above focuses on cases whereσG

s andσT
s disagree. Thus it tells us thatσG

s is more
accurate thanσT

s but is too biased to satisfactorily answer the broader question of how
well σG

s predicts assessments of semantic similarity by human subjects in general.

3.1 Validation of σG
s as a Ranking Function

To provide stronger evidence supporting the effectiveness ofσG
s as a predictor of hu-

man assessments of similarity, we conducted a new experiment. The goal of this new
experiment was to determine if the rankings induced byσG

s were in accordance with
rankings produced by humans.

Twenty volunteer subjects were recruited to answer questions about similarity rank-
ings for Web pages. For each question, they were presented with a target Web page and
three candidate Web pages that had to be ranked based to their similarity to the target
page. The subjects had to answer by sorting the three candidate pages. A total of 6 target
Web pages randomly selected from the ODP directory were used for the evaluation. For
each target Web page we presented a series of 3 triplets of candidate Web pages. The
candidate pages were selected with controlled differences in their semantic similarity to
the target page, ensuring that there was a difference inσG

s of at least 0.1 among them.
To ensure that the participants made their choice independently of the questions already
answered, we randomized the order of the options. The result of the experiment was an
average Spearman rank correlation coefficientρ = 0.73.

4 Evaluating Topical Search using ODP and Semantic Similarity
In this work we define topical search as a process which goal is to retrieve resources rel-
evant to a thematic context (e.g., [18]). The thematic context can consist of a document
that is being editing or a Web page that is being visited. The availability of powerful
search interfaces makes it possible to develop efficient topical search systems. Access to
relevant material through these interfaces requires the submission of queries. As a con-
sequence, learning to automatically formulate effective topical queries is an important
research problem in the area of topical search.

In order to determine if a topical search system is effective we need to identify the
set of relevant documents for a given topic. The classification of Web pages into topics
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as well as their semantic similarity derived from topical ontologies can be usefully ex-
ploited to build a test collection. In particular, these topical ontologies serve as a means
to identify relevant (and partially relevant) documents for each topic. Once these rele-
vance assessments are available, appropriate performance metrics that reflect different
aspects of the effectiveness of topical search systems can be computed.

Consider the ODP topic ontology. LetRt be the set containing all the documents
associated with the subtree rooted at topict (i.e., all documents associated with topict
and its subtopics). In addition, other topics in the ODP ontology could be semantically
similar tot and hence the documents associated with these topics are partially relevant
to t. We useσG

s (t, topic(d)) to refer to the semantic similarity between topict and the
topic assigned to documentd. Additionally, we useAq to refer to the set of documents
returned by a search system usingq as a query, whileAq10 is the set of top-10 ranked
documents returned for queryq.

4.1 Evaluation Metrics

In order to evaluate the performance of a topical search system using the ODP ontol-
ogy we could use the following metrics which are taken directly or are adapted from
classical information retrieval performance evaluation metrics [4].

Precision. This well-known performance evaluation metric is computed as the fraction
of retrieved documents which are known to be relevant to topict:

Precision(q, t) = |Aq ∩Rt|/|Aq|.

Semantic Precision. As mentioned above, other topics in the ontology could be se-
mantically similar (and therefore partially relevant) to topict . Therefore, we propose a
measure of semantic precision defined as follows:

PrecisionS(q, t) =
∑

d∈Aq

σG
s (t, topic(d))/|Aq|.

Note that for alld ∈ t we have thatσG
s (t, topic(d)) = 1. ConsequentlyPrecisionS can

be seen as a generalization ofPrecision, wherePrecisionS takes into account not only
relevant but also partially relevant documents.

Precision at rank 10. Since topical retrieval typically results in a large number of
matches, sorted according to some criteria, rather than looking at precision, we can
take precision at rank 10, which is computed as the fraction of the top 10 retrieved
documents which are known to be relevant:

Precision@10(q, t) = |Aq10 ∩Rt|/|Aq10|.

Semantic Precision at rank 10.We compute semantic precision at rank 10 as a gener-
alization ofPrecision@10by considering the fraction of the top ten retrieved documents
which are known to be relevant or partially relevant tot:

PrecisionS@10(q, t) =
∑

d∈Aq10

σG
s (t, topic(d))/|Aq10|.
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Recall. We adopt the traditional performance measure of recall [4] as another criteria
for evaluating query effectiveness. For a queryq and a topict, recall is defined as the
fraction of relevant documentsRt that are in the answer setAq:

Recall(q, t) =
|Aq ∩Rt|
|Rt|

.

Harmonic Mean. Finally we use the functionF-score, which is the weighted harmonic
mean of precision and recall [4]:

F-score(q, t) =
2 · Precision(q, t) · Recall(q, t)
Precision(q, t) + Recall(q, t)

.

Other metrics could be used to compute a weighted harmonic mean. For example,
we can computeF-score@10as follows:

F-score@10(q, t) =
2 · Precision@10(q, t) · Recall(q, t)
Precision@10(q, t) + Recall(q, t)

.

In addition, we propose a weighted harmonic mean that takes into consideration par-
tially relevant material by aggregatingPrecisionS andRecallas follows:

F-scoreS(q, t) =
2 · PrecisionS(q, t) · Recall(q, t)
PrecisionS(q, t) + Recall(q, t)

.

Analogously, we can defineF-scoreS@10(q, t) as follows:

F-scoreS@10(q, t) =
2 · PrecisionS@10(q, t) · Recall(q, t)
PrecisionS@10(q, t) + Recall(q, t)

.

4.2 A Short Description of the Evaluated Systems

In illustrating the application of the proposed evaluation framework we will focus on
assessing the performance of supervised topical search systems. Supervised systems re-
quire explicit relevance feedback, which is typically obtained from users who indicate
the relevance of each of the retrieved documents. The best-known algorithm for rele-
vance feedback has been proposed by Rocchio [27]. Given an initial query vector−→q a
modified query−→qm is computed as follows:

−→qm = α−→q + β
∑
−→
dj∈Rt

−→
dj − γ

∑
−→
dj∈It

−→
dj .

whereRt andIt are the sets of relevant and irrelevant documents respectively andα, β
andγ are tuning parameters. A common strategy is to setα andβ to a value greater than
0 andγ to 0, which yields a positive feedback strategy. When user relevance judgments
are unavailable, the setRt is initialized with the topk retrieved documents andIt is set
to ∅. This yields an unsupervised relevance feedback method.
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The Bo1 and Bo1? Methods. A successful generalization of Rocchio’s method is the
Divergence from Randomness mechanism with Bose-Einstein statistics (Bo1) [2]. To
apply this model, we first need to assign weights to terms based on their informative-
ness. This is estimated by the divergence between the term distribution in the top-ranked
documents and a random distribution as follows:

w(t) = tfx.log2
1 + Pn

Pn
+ log2(1 + Pn)

wheretfx is the frequency of the query term in the top-ranked documents andPn is the
proportion of documents in the collection that containst. Finally, the query is expanded
by merging the most informative terms with the original query terms.

The main problem of the Bo1 query refinement method is that its effectiveness
is correlated with the quality of the top-ranked documents returned by the first-pass
retrieval. If relevance feedback is available, it is possible to implement a supervised
version of the Bo1 method, which we will refer to as Bo1?. This new method is identical
to the Bo1 method except that rather than considering the top-ranked documents to
assign weights to terms, we look only at the top-ranked documents which are known to
be relevant. Once the initial queries have been refined by applying the Bo1? method on
the training set, they can be used on a different set. The Bo1? method can be regarded
as a supervised version of the Bo1.

Multi-Objective Evolutionary Algorithms for Topical Search. In [8] we presented
a novel approach to learn topical queries that simultaneously satisfy multiple retrieval
objectives. The proposed methods consist in training a Multi-Objective Evolutionary
Algorithm (MOEA) that incrementally moves a population of queries towards the pro-
posed objectives.

In order to run a MOEA for evolving topical queries we need to generate an initial
population of queries. Each chromosome represents a query and each term corresponds
to a gene that can be manipulated by the genetic operators. The vector-space model is
used in this approach [4] and therefore each query is represented as a vector in term
space.

In our tests, we used a portion of the ODP ontology to train the MOEAs and a dif-
ferent portion to test it. The initial queries were formed with a fixed number of terms
extracted from the topic description available from the ODP. Documents from the train-
ing portion of ODP were used to build a training index, which was used to implement
a search interface. Following the classical steps of evolutionary algorithms, the best
queries have higher chances of being selected for subsequent generations and therefore
as generations pass, queries associated with improved search results will predominate.
Furthermore, the mating process continually combines these queries in new ways, gen-
erating ever more sophisticated solutions.

Although we have analyzed different evolutionary algorithms techniques following
the above general schema, we will limit the evaluation reported here to two strategies:

– NSGA-II: Multiple objectives are simultaneously optimized with a different fitness
function used for each objective. For this purpose we used NSGA-II (Nondom-
inated Sorting Genetic Algorithm – II) [11], a MOEA based on the Pareto domi-
nance concept (dominance is a partial order that could be established among vectors
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defined over an n-dimensional space). In our tests, NSGA-II attempted to maximize
Precision@10andRecall.

– Aggregative MOEA: A single fitness function that aggregates multiple objectives
as a scalar value is used. For that purpose, we have used theF-score@10measure
introduced earlier.

Due to space limitations we refer the reader to [8] for details on the implementation
of these MOEA strategies for topical search and focus here on how their performance
was assessed using the proposed evaluation framework.

4.3 Results

Our evaluations were run on 448 topic from the third level of the ODP hierarchy. For
each topic we collected all of its URLs as well as those in its subtopics. The language
of the topics used for the evaluation was restricted to English and only topics with at
least 100 URLs were considered. The total number of collected pages was more than
350,000. We divided each topic in such a way that 2/3 of its pages were used to create a
training index and 1/3 to create a testing index. The Terrier framework [24] was used to
index these pages and to create a search engine. We used the stopword list provided by
Terrier and Porter stemming was performed on all terms. In addition we took advantage
of the ODP ontology structure to associate a semantic similarity measure to each pair
of topics. In our evaluations we compared the performance of four topical search strate-
gies that consisted in (1) queries generated directly from the initial topic description
(baseline); (2) queries generated using the Bo1? query-refinement technique reviewed
earlier in this article; (3) queries evolved using NSGA-II; and (4) queries evolved using
the aggregative MOEA strategy.

Out of the 448 topics used to populate the indices, a subset of 110 randomly se-
lected topics was used to evaluate the supervised topical search systems discussed in
the previous section. For the training stage we run the MOEAs with a population of 250
queries, a crossover probability of 0.7 and a mutation probability of 0.03. The selection
of values for these parameters was guided by previous studies [7]. For each analyzed
topic the population of queries was randomly initialized using its ODP description. The
size of each query was a random number between 1 and 32. Table 1 presents the statis-
tics comparing the performance of the baseline queries against the performance of the
other strategies.

From table 1 we observe that the measures that have been extended with semantic
similarity data appear to provide a more realistic account of the of the advantage of the
various techniques over the baseline. The “soft” extended measures give more credit
to all techniques, but relatively more to the baseline, so that the relative improvement
appears smaller. This is indicated by the fact that the observed improvement of 160%
in PrecisionS@10 is more believable than one of 3142%. The same observation holds
for an improvement inF-scoreS@10of 762% versus 6170%.

5 Conclusions

This paper addresses the problem of automatically evaluating topical retrieval systems
using topical ontologies and semantic similarity data. After reviewing a definition of se-
mantic similarity for topical ontologies and providing experimental evidence supporting
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AveragePrecision@10
mean 95% C.I. improvement

Baseline 0.015 [0.013,0.017] –
Bo1? 0.138 [0.117,0.159] 802%
NSGA-II 0.536 [0.479,0.593] 3405%
Aggregative MOEA 0.496 [0.442,0.549] 3142%

AveragePrecisionS@10
mean 95% C.I. improvement

Baseline 0.293 [0.283,0.303] –
Bo1? 0.480 [0.452,0.508] 64%
NSGA-II 0.714 [0.658,0.770] 144%
Aggregative MOEA 0.759 [0.699,0.819] 160%

AverageRecall
mean 95% C.I. improvement

Baseline 0.051 [0.048,0.055] –
Bo1? 0.440 [0.411,0.470] 768%
NSGA-II 0.586 [0.558,0.614] 1049%
Aggregative MOEA 0.559 [0.530,0.588] 990%

AverageF-score@10
mean 95% C.I. improvement

Baseline 0.008 [0.007,0.009] –
Bo1? 0.141 [0.121,0.161] 1753%
NSGA-II 0.504 [0.460,0.547] 6519%
Aggregative MOEA 0.477 [0.436,0.518] 6170%

AverageF-scoreS@10
mean 95% C.I. improvement

Baseline 0.074 [0.069,0.080] –
Bo1? 0.459 [0.431,0.488] 520%
NSGA-II 0.622 [0.584,0.660] 736%
Aggregative MOEA 0.644 [0.601,0.687] 762%

Table 1.Baseline vs. queries refined with the Bo1? method, queries evolved with NSGA-II and
queries evolved with the aggregative MOEA: mean, confidence intervals and improvement over
baseline for average query quality based on 110 topics.
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its effectiveness, we have proposed an evaluation framework that includes classical and
adapted performance metrics derived from semantic similarity data.

Metrics that rely on semantic similarity data have also been used in the evaluation
of semi-supervised topical search systems [17]. However, the use of semantic similarity
data does not need to be limited to the evaluation of topical retrieval system. In [19]
semantic data is used to evaluate mechanisms for integrating and combining text and
link analysis to derive measures of relevance that are in good agreement with semantic
similarity. Phenomena such as the emergence of semantic network topologies have also
been studied in the light of the proposed semantic similarity measure. For instance, it
has been used to evaluate adaptive peer based distributed search systems. In this evalu-
ation framework, queries and peers are associated with topics from the ODP ontology.
This allows to monitor the quality of a peer’s neighbors over time by looking at whether
a peer chooses “semantically” appropriate neighbors to route its queries [1]. Semantic
similarity data was also used for grounding the evaluation of similarity measures for
social bookmarking and tagging systems [28, 21]. In the future, we expect to adapt the
proposed framework to evaluate other information retrieval applications, such as clas-
sification and clustering algorithms.
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