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Abstract

DMOZ is the largest human-edited topic ontology available on the Web. This ar-

ticle studies the structural properties of the DMOZ graph. A number of global

and local properties of this graph and the subgraphs resulting from isolating

edges of different types are examined by means of metrics commonly used in

complex network analysis. In particular, we investigate the presence of various

features that characterize small-world networks. This analysis is complemented

by examining other characteristics of the graphs such as connectivity and cen-

trality measures. The connectivity and centrality patterns are further studied

by means of visualizations of the graphs’ k-core decomposition and a selection

of strongly connected components. Several non-trivial regularities that are also

encountered in other artificial and natural complex networks provide a general

picture of this large human-edited topic ontology. This analysis is of major

pragmatic interest as it allows a better understanding of notions such as navi-

gability among topics, hierarchical structure and topic cohesiveness, which are

of great importance in the design of topic ontologies.
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1. Introduction

Ontologies are structures commonly used to capture knowledge about cer-

tain areas by providing relevant topics or concepts and relations between them.

A general topic ontology such as DMOZ (Directory Mozilla), historically known

as ODP (Open Directory Project), is a complex structure that reflects the collec-5

tive knowledge of the ontology editors about a broad range of topics. Revealing

information about structural aspects of this ontology can provide useful in-

sights on the nature of topic connectivity, topic importance, topic relevance and

topic similarity, among other useful concepts, conferring a unique opportunity

to address the important cognitive problem of understanding “the landscape of10

topics” as realized by a large number of human editors.

The DMOZ is a collaborative classification of websites. The topical structure

made up from this classification can be represented as a big graph or ontology.

In the DMOZ topic ontology, topics are represented as nodes in a tree-structured

hierarchy, with “is-a” connections determined by topic-inclusion relations. In15

addition, DMOZ admits cross-links representing “symbolic” connections to al-

low for topics with multiple parents. Finally, another type of relation repre-

sented by “related” links allows to connect related topics that are not involved

in a class-inclusion relation. While the tree-structured hierarchy imposes strong

constraints on the general organization of the DMOZ ontology, the “symbolic”20

and “related” connections loose up these constraints and offer the possibility

of integrating the taxonomical component of DMOZ with more general com-

ponents, resulting in less restricted connectivity patterns when analyzed as a

whole.

Network analysis constitutes a powerful tool for inferring several properties25

on datasets arising from a wide range of areas. From the topological structure of

the web [9] to the analysis of the economy of a country [16], network properties

reveal many important features of the represented models. These properties

have important implications on the robustness, navigability, and cohesiveness

of the networks. Large volumes of linked data can be analyzed from a Complex30
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Network perspective, with application to information retrieval. A structural

study of a big corpus, made up of interconnected documents or other kinds of

information entities, could help on finding useful information about the semantic

relations existing among these entities. Graph representations have proved to

be an effective and efficient way for structural semantic similarity calculations35

[28]. The structure of semantic networks constructed from word associations has

been widely studied in cognitive science [39, 7, 31], with application in several

areas such as the assistance of people with the anomic aphasia disease [34].

The study presented here focuses on analyzing the network topology of the

DMOZ graph in its pure form. It also analyses the network topology of the sub-40

graphs of DMOZ corresponding to edges of the three different types involved

in this ontology, namely taxonomical, symbolic and related edges. The analy-

sis is carried out by computing various complex network metrics, such as node

degree, local clustering coefficient, average shortest path length, and diameter

of the network, allowing to draw interesting conclusions about non-trivial reg-45

ularities present in the analyzed graphs. To the best of the authors’ knowledge

this article provides the first large-scale analysis of a topic ontology graph from

a complex network perspective.

2. Background

In this section some graph-theoretic concepts are briefly described, in partic-50

ular those that relate to the analysis carried out on the DMOZ structure. Then,

we describe various measures and tools that have been adopted to complete the

analysis reported in this article.

2.1. DMOZ as a graph

The DMOZ project is a large directory of websites organized by topics.55

The main component of this directory is a hierarchical structure, the DMOZ

taxonomy. Websites are added to the directory by assigning them to existing

topics from the taxonomy. Besides its hierarchical structure, DMOZ contains
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other kinds of links between topics, as is the case of “symbolic” and “related”

links. “Symbolic” links correspond to alternative classifications that escape from60

the taxonomy, and have to be included in the directory. “Related” links are used

to connect topics that are associated according to some criterion whenever such

relation is not expressed as a taxonomic or symbolic relation. More formally,

the structure of DMOZ can be represented as a directed graph G = (N; E)

with a set of nodes N and a set of edges E. Each node in N represents a topic65

containing documents, and every edge of E connects two nodes of N. The set of

edges E is made up of three classes of links between topics:

• class T, corresponding to the hierarchical component of the ontology,

• class S, reflecting the non-hierarchical “symbolic” cross links, and

• class R, representing the “related” cross links, also organized in a non-70

hierarchical fashion.

These three types of links give rise to the T-subgraph, S-subgraph and R-

subgraph, respectively. Each of these subgraphs will be analyzed as independent

networks as well as jointly.

Figure 1 illustrates a portion of the structure of the DMOZ ontology graph,75

showing the three types of links.

2.2. Structural Analysis of Graphs

This section reviews some concepts, measures and algorithms that we have

adopted to analyze the most salient properties of the DMOZ ontology graph.

2.2.1. Connectivity and centrality measures80

Several connectivity and centrality measures commonly used for complex

network analysis can be applied to the DMOZ graph, offering a means to assess

topic importance and relevance among topics. Next, we describe the connectiv-

ity and centrality measures used in this work.

4



Figure 1: Portion of the DMOZ ontology.

• Graph density: The density of a graph is the proportion of edges actually85

present in a graph with respect to the number of possible links that could

be established between the nodes of the graph. This measure is computed

on a graph G = (N,E) as follows [14]:

Density(G) =
|E|

|N |(|N | − 1)
.

• Diameter: The diameter of a graph is characterized by the largest dis-

tance between any two nodes, where the distance between a pair of nodes90

is the length of the shortest path between them [22].

• Characteristic Path Length (CPL): Also known as Average path length,

is the mean length of all the shortest path lengths in the graph. This mean

value is very representative for several features of a graph, as is the case of

the “Small World property” [41], which is described in the next subsection.95

The formula for computing the CPL l of a graph G=(N, E) is:

l(G) =
1

|N | ∗ (|N | − 1)

∑
i∈N

∑
j∈N\{i}

spl(i, j),

where spl(i, j) is the shortest path length for nodes i and j.
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• Connectivity length (CL): In [29] an alternative to the CPL is pro-

posed. Instead of using the arithmetic mean of the shortest path lengths,

the harmonic mean is used. This measure attempts to address the prob-100

lem of disconnected nodes. If a node is not reachable from another one,

then the distance between them is ∞. Supposing that ∞−1 = 0, the

connectivity length for a graph G = (N,E) is computed as:

D(G) =
|N |(|N | − 1)∑
i,j∈N

1
d(i,j)

.

• Local Clustering Coefficient: This measure is defined as a degree of

interconnection between the neighbors of a node [41]. For the calculation105

of this coefficient in directed graphs, the number of real edges between

neighbors of the corresponding node i is divided by the total amount of

possible edges between them, according to the next formula:

Ci =
|{ejk : j, k ∈ Ni; ejk ∈ E}|

|Ni|(|Ni| − 1)
,

where Ni is the set of neighbors of node i, and ejk is an edge between

nodes j and k. This coefficient lies on the interval [0, 1], and reflects the110

proportion of edges between neighbors present in the graph induced by

the neighbors of node i.

• Betweenness Centrality: If a node i plays an important role in the

graph structure, it is likely to be situated in a central place of the network.

In order to measure this property, the betweenness centrality (BC) degree115

is the proportion of shortest paths between every pair of nodes in the

graph that pass through node i. This measure was first proposed in [19],

and an efficient algorithm for its computation has been developed in [8].

The betweenness centrality of a node i is computed as follows:

bci =
∑
j 6=i6=k

σjk(i)

σjk
,

where σjk is the total number of shortest paths from a node j to another120

node k, and σjk(i) is the number of shortest paths from node j to node k

that pass through i.
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• Closeness Centrality: The closeness of a node i is defined as the recip-

rocal of the sum of distances to that node from every other node in the

network [5]. When a node is relatively central in a network, this measure125

is expected to be higher. As for betweenness centrality, this measure is

defined over the shortest paths between every pair of nodes. The existence

of nodes that cannot reach i represents a problem for computing closeness

centrality, but it is overcome by considering as zero those distances [6].

The formula is given by:130

cli =
1∑

d(j,i)<∞ d(j, i)
,

where d(j, i) is the shortest path distance between nodes j and i.

• Harmonic Centrality: Another way for evaluating centrality of a node

i is to compute the harmonic mean over all distances from every node j

to node i, for the set of co-reachable nodes of i [29]. Then, this measure

is calculated as follows:135

hci =
∑

d(j,i)<∞,j 6=i

1

d(j, i)
.

According to this formula, the longer are the distances to node i, the

smaller is the centrality value.

• Lin’s index for Closeness Centrality: In order to obtain a more ap-

propriate definition of closeness centrality, an alternative index to measure

this value was presented in [27]. This alternative measure weights close-140

ness by means of the square of the number of co-reachable nodes. Thus,

the definition for this measure is:

lini =
|{j : d(j, i) <∞}|2∑
d(j,i)<∞,j 6=i d(j, i)

.

Instead of considering the inverse of a sum of distances, this notion of

centrality is based on the inverse of the average distance. This way, a

normalization in the value of closeness is attained. The square in the145
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formula allows to weight more strongly those nodes with a larger set of

co-reachable nodes.

• Degree distribution: As known in graph theory, the degree k of a node

i in an undirected graph reflects the number of edges or connections the

node i has to other nodes and is computed as follows [20]: ki =
∑
j aij ,150

for all the nodes j connected to node i. In the case of directed graphs,

this degree is indicated with two numbers, namely the in-degree kin and

the out-degree kout: kini =
∑
j aji, and kouti =

∑
j aij , for all the nodes j

connected to node i. The degree distribution P(m) for undirected graphs

is defined as the probability that a node is linked to m nodes. For the155

case of directed graphs, the in-degree distribution Pin(m) and the out-

degree distribution Pout(m) are defined as the probabilities for any node

of having m incoming or outgoing links respectively. Given a directed

graph G =(N,E), these distributions are computed as follows:

Pin(m) =
Number of nodes with in-degree m

|N |
,

and160

Pout(m) =
Number of nodes with out-degree m

|N |
.

2.2.2. The “Small World” property

The Small-World property is an indicator of the topology of a network that

provides information about its robustness, propagation speed, computational

power and synchronizability [41]. These networks have a low CPL l(G), turning

any node reachable in relatively few steps from any other node. Another repre-165

sentative feature of Small-World networks is a high level of clustering coefficient,

yielding high connectivity for the entire graph. The networks that exhibit this

feature could be placed on an intermediate point between regular lattices and

random graphs, as empirically demonstrated in [41].

An important issue on the small-world analyses from Watts and Strogatz is170

the requirement of total connectedness. If there are isolated groups of nodes,
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measures like the CPL could not represent the complete network behavior cor-

rectly. The work of Marchiori [29] introduces the use of harmonic means instead

of classical geometric means. With this change on the measures, non-connected

networks might be studied properly. In the present article, we perform the175

small-world analysis on DMOZ Ontology employing both the Watts-Strogatz

and Marchiori-Latora methods.

2.2.3. Strongly connected components

The structure of complex networks often involves sets of nodes intercon-

nected by paths, as well as pairs of nodes that are unreachable from each other.180

In a broader view, some groups of connected nodes could be found. Such groups

are known as connected components in graph theory. Particularly for directed

graphs, a strongly connected component (SCC) consists of a group of nodes

with the following property:

For every pair of nodes (i, j ) that belong to the same strongly connected185

component, there is a path from i to j.

The algorithm proposed by Tarjan [40] performs the detection of SCC’s by

means of the identification of cycles in the graph. For the particular case of

DMOZ, the existence of links between nodes of different branches of the taxon-

omy, i.e. symbolic or related links, can give rise to SCC’s. Figure 2 shows an190

example of a small taxonomy with cross edges. In this example, two SCC’s are

highlighted.

2.2.4. Power-law distributions

Power-law distributions can be modeled with the following function of prob-

ability distribution [33]:195

p(x) = Cx−α.

In this paper the negative exponent α denotes the scaling exponent of each

analyzed power-law distribution. Particularly, when this value is greater than

2, the distribution is said to have a well-defined mean, and if it is higher than 3,
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Figure 2: An example of the detection of SCC’s in a DMOZ-like graph

the associated phenomenon also has a finite variance. When the node degrees of

a network follow a power-law distribution, such network is said to be Scale-free.200

2.2.5. Visual Analysis

The visual representation of the DMOZ ontology allows to identify a number

of interesting features that otherwise would remain unnoticed. A useful tool

for the visualization of large graphs is Large Networks Visualization (LaNet-

Vi, [2]). This tool generates visualizations of undirected graphs, employing a205

k-core decomposition algorithm. The k-core decomposition [38] systematically

identifies layers of nodes with equal degree. The most outer layer of a k-core

decomposition will be made up by the least connected nodes, and the central

layer by the most connected ones. It is possible to define an alternative degree

value that represents the degree of a node after the layers external to that node210

are identified. This degree, referred to as shell-degree, takes a value smaller than

or equal to the node’s original degree.

In Figure 3 the topology of a network is graphically represented by means of

the LaNet-Vi tool. The shell-degrees resulting from the k-core decomposition

are shown in the legend at the right-hand side of the figures. The nodes are215

displayed over different circles, according to several criteria. For instance, nodes

included in the same circle belong to the same shell and the size of a node

determines its degree.
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Figure 3: Graphical representation of a k-core decomposition

Gephi [4] is another software tool that enables to compute several metrics

on graphs and to apply different graph layout techniques for visualizing nodes220

and edges. In this work, Gephi is employed to render visualizations of some

communities of nodes of the DMOZ graph, according to the identified SCC’s.

3. Related work

The analysis of the global structure of different datasets represented as net-

works provides a wide-range perspective of their static and dynamic aspects.225

This section presents a literature overview of approaches aimed at analyzing

different kinds of networks from a complex network perspective, particularly

focusing on semantic networks and ontologies.

An interesting research field in psychology and neuroscience that has been

studied from the complex networks perspective is the way human and animal230

brains work. Different studies have recognized that brain networks share cer-

tain key organizational principles with other complex networks, such as short

path length, high clustering coefficient, hierarchical structure, and power-law

degree distribution ([26, 18]). Some works study the trade-offs from multiple

constraints involved in the organization of neural systems, such as Bullmore235
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[11]. The work of Bullmore and Sporns [10], discusses how the organization

of complex brain networks is conserved over different scales and for different

species. Many other systems and processes have been studied as complex net-

works. These include the World Wide Web [1], the Internet [36], peer-to-peer

networks [25], science collaboration networks [32], metabolic networks [24], epi-240

demic processes [35], and the economic structure of countries [16], among others.

An extensive review of real-world phenomena analyzed as complex networks is

presented in [15].

The nearest research area for this paper is comprised by semantic networks

and ontologies. Understanding the way knowledge emerges, evolves and is re-245

trieved by the human brain has been a long-standing research focus in cognitive

science. Insights into these problems could constitute a milestone in the develop-

ment of new methods and techniques for more effective information retrieval and

human-computer interaction, among a wide range of purposes. A useful starting

point for understanding knowledge organization phenomena in human subjects250

has been to study semantic word association networks, at aggregative and indi-

vidual levels, from a complex networks perspective. The work of Steyvers and

Tenenbaum [39] tries to explain the process of semantic growth in terms of new

generation models of specific types of networks. The proposed models offer an

explanation for the large-scale structural features of the semantic networks un-255

der analysis, such as their small-world nature and degree distributions, among

others. However, the authors argue that the process of network growth that

governs the evolution of word association networks is different from the classical

models proposed by other authors, such as the small-world network generation

process described by Watts and Strogatz [41] or the preferential attachment260

model of Barabási and Albert [3]. Nevertheless, while Steyvers and Tenenbaum

[39] state that the semantic networks studied are scale-free, Morais et al. [31]

have argued that node-degree distributions different from the general power-law

distribution fit better in some cases. Particularly, statistical tests have deter-

mined that the power-law with exponential cutoff distribution [13] provides a265

better fit for some networks. Morais et al. [31] show results for individual se-
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mantic networks that are in accordance with these findings, and state that the

growing network models proposed are in good agreement with the structure of

the semantic memories generated by the evaluated individuals. But there is

still a long way to go in semantic networks and brain connectivity research, in270

order to uncover the issues of human cognitive processes. Given that DMOZ is

a human-conducted classification of topics, it could serve as another aggrega-

tive semantic network that reflects collective knowledge on topical structures,

shedding light to the cognitive processes studied.

Besides the spread of semantic network studies arising from aggregate word275

association, several works have applied the complex network point of view to

study domain-specific ontologies. Particularly, “folksonomies” have captured

the attention of researchers, as they are intended to generate better seman-

tic networks by involving the social dimension in specific contexts. In [12] the

small-world, scale-free and several network properties are uncovered for specific280

folksonomies. Mika [30] compares the accuracy of folksonomies against text-

mining-generated ontologies, recognizing the most central nodes and the most

cohesive clusters in terms of betweenness centrality and clustering coefficient,

and Hoser et al. [23] perform studies over ontologies, analyzing centrality and

connectedness of nodes for identifying concepts that could be unified. Besides285

considering associations of concepts, Gueret et al. [21] propose a framework to

analyze and enhance the quality of the links within a document network by

means of topological and similarity measures, increasing clustering and decreas-

ing the characteristic path length.

4. Analysis290

The measures described in the Background section were applied to the

DMOZ ontology structure. According to the results, several interpretations

are provided regarding the topological properties of a topical ontology.
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4.1. Data set

The analyzed data set comprises the basic DMOZ ontology, with the three295

types of links detailed in the Background section. Many efficient algorithms

have been implemented for processing the large structures associated with the

DMOZ graph. The employed ontology comprises a set of 571,148 topics. Table 1

summarizes the number of edges for the three types of links in the DMOZ

ontology.300

Table 1: Number of edges of each type in the DMOZ Ontology

Type of link Number of edges

T (Main Taxonomy) 571,147

S (Symbolic) 545,805

R (Related) 380,264

4.2. Strongly Connected Components

The SCC’s of the DMOZ graph and the S and R components were computed

using the algorithm of Tarjan [40] explained in the Background section. The

taxonomy T was not considered as an independent subgraph in this study given

that, as it is a tree structure, it does not present cycles and hence no SCC’s could305

be found. The goal of this analysis is to determine whether the distribution of

the sizes of the SCC’s follows a power law, and to verify the existence of a big

connected component, among other properties.

Figure 4: Distribution of SCC sizes for DMOZ graphs in log-log scale
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Figure 4 shows the size distribution of SCC’s in log-log scale for the S- and

R-subgraphs and for G. The scaling exponents of the approximation formulae310

for the SCC distributions are reported in table 2. This table also shows the size

of the greatest SCC for each graph, and the number of one-node components.

It is interesting to note that the largest SCC component of G contains nearly

half of the DMOZ topics. Different from G, the R- and S-subgraphs do not

exhibit the presence of a considerably big SCC. The scaling exponent is larger315

for R than for G, but this could be a consequence of the absence of a larger

SCC in R. The highest number of isolated nodes corresponds to the component

S, which also has the lowest size for the largest SCC. The S-subgraph is the only

graph that presents a considerably high scaling exponent for the distribution of

SCC sizes. R and G have scaling exponents lower than 2, and this indicates320

that their SCC distributions do not have a well-defined mean. However, the

number of nodes that are isolated or belong to the largest SCC in each of these

two graphs causes a distortion in the real nature of their distributions. If the

largest SCC and the isolated nodes are not considered in the graphs R and G,

the scaling exponents become 2.502 and 2.135, respectively, and it is observed325

that the data fit power-law distributions with better defined parameters.

Table 2: Properties of SCC’s for DMOZ graphs

Graph Scaling exponent Size of biggest SCC Number of isolated nodes

S 2.202 104 568,080

R 1.410 5,314 545,948

G 1.100 267,541 274,552

4.3. Connectivity and Centrality measures

Global measures —density, diameter, average shortest path length and con-

nectivity length— and local measures —local clustering coefficient, betweenness
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centrality, closeness centrality, harmonic centrality and Lin’s index— were com-330

puted for the graphs and are reported and analyzed in the next subsections.

4.3.1. Graph Density

The second column of Table 3 shows the densities of the DMOZ graphs.

Densities are low for the four analyzed graphs, as only a small number of links

exist compared to the maximum possible number of links between topics in335

DMOZ.

Table 3: Graph density, Diameter, CPL and CL of the DMOZ graphs

Graph Density Diameter CPL CL

T 0.0002% 14 3.6981 222,286

S 0.0003% 33 7.5791 321,849

R 0.0003% 61 16.2653 4,997

G 0.0006% 45 11.1196 22

4.3.2. Diameter

As explained in the Background section, the diameter of a network is the

shortest distance between the two most distant nodes in the network. This

measure, jointly with the CPL and the Connectivity Length, provide relevant340

information about the connectivity patterns of the network. The diameter of

the DMOZ graphs are shown in the third column of Table 3. As is expected

for the case of T, the diameter is coincident with the depth of the hierarchy.

An example of a node corresponding to the path of a topic with that length is

“Top/ Regional/ North America/ United States/ New York/ Localities/ N/ New345

York City/ Brooklyn/ Society and Culture/ Religion/ Christianity/ Catholi-

cism/ Eastern Rites/ Maronite”. The component R has the largest diameter

value and S exhibits a lower value. Consistently, the diameter of G has an

intermediate value due to the set of links contributed by T and S. The large

diameter of R could be a consequence of the nature of its edges, given that the350
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“related” links are not governed by any taxonomical principle as actually are T

and S.

4.3.3. Characteristic Path Length and Connectivity Length

The CPL and CL measures correspond to average values associated with the

connectedness of the network. The CPL expresses the expected length of any355

existing path between two nodes in the graph, while the CL provides a more

representative estimation by taking into account that the network could contain

disconnected components. The fourth and fifth columns of Table 3 show these

two measures for each DMOZ graph. While CPL only averages the distances

between every pair of co-reachable nodes in the network, the CL penalizes the360

existence of non-co-reachable nodes, stressing the importance of connectedness

in the network. This fact is evidenced for the components T and S that have

good (low) CPL values but bad (very high) CL values. The component R has a

considerable lower value of CL, but it is still very high to consider that subgraph

as highly connected. Evidence of the fact that the R-subgraph is not highly365

connected is also given by its CPL, which takes the highest value among the

four analyzed graphs. In contrast, when the three components are considered

jointly in G, the CL value decreases to 22, denoting a high connectedness for

the complete DMOZ graph. In this case the CPL and CL values are more

consistent.370

4.3.4. Local clustering coefficient

The Clustering Coefficient (CC) values are shown in table 4 and figure 5.

The T component does not contain any cycle, as it is a hierarchy. Also, every

node only has edges connecting it with its immediate descendants. Hence, no

node can have a CC value different from 0, given that there are no connections375

between its neighbors.

Figure 5 shows a chart with the grouped frequencies of CC values for each

graph. Most values agglomerate in the interval between 0 and 0.1 in all the

graphs. As it can be seen in table 4, the highest average CC value corresponds
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Table 4: Clustering coefficients values of the DMOZ graphs

Graph Average CC Number of nodes with CC=0 Number of nodes with CC=1

T 0 571148 0

S 0.0096 548,312 131

R 0.0484 496,157 2,040

G 0.0531 372,272 935

Figure 5: Grouped frequencies for Clustering coefficients of DMOZ graphs

to graph G. Nevertheless, it is not a relatively high CC value and the number380

of nodes with 0 as CC value is very high for all the graphs.

4.3.5. Betweenness centrality

The objective of measures of node centrality is the identification of those

nodes that control a network, participating in a large percentage of the com-

munication between its nodes. Table 5 shows the average BC values for the385

analyzed DMOZ graphs as well as the number of nodes with BC=0 and the

maximum BC value found in each graph. Determining the BC measures for the

DMOZ graphs is computationally very expensive given that it requires comput-

ing the shortest path between all node pairs. As can be seen in table 5, the

graph G has a node that participates in more than 25 billions of shortest paths,390
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and the average BC value is about 2.7 millions. Even though there are very

high BC values, the proportion of nodes with 0 as BC value is considerably high

in each graph. This is a consequence of the taxonomical organization of the T-

and S-subgraphs that position the most specific nodes at the end of the paths,

and hence those nodes do not take part as intermediaries in any shortest path.395

Figure 6 shows the distributions of BC values in each DMOZ graph. According

to that figure, while all of these distributions seem to be heavy-tailed, only those

associated with the T- and S-subgraph appear to fit power laws.

Table 5: Betweenness centrality values of the DMOZ graphs

Graph Average BC Number of nodes with BC=0 Highest BC

T 22 435,641 529,605

S 44 512,596 963,578

R 25,121 517,718 105,026,375

G 2,708,969 233,362 25,192,567,132

Figure 6: BC distribution in log-log scale for the DMOZ graphs

4.3.6. Alternative Measures of Centrality

Another method for the computation of the centrality of a node in a network400

consists in determining the set and distances of co-reachable nodes in different

ways, instead of considering the shortest paths that include the corresponding

node (BC) or its neighbors and their connections (CC). This approach is imple-

mented by the measures of Closeness Centrality, Harmonic Centrality and Lin’s

Index, described in the Background section. Table 6 shows the mean and max405

values of these measures for each DMOZ graph.
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Table 6: Average values of Closeness Centrality, Harmonic Centrality and Lin’s Index for the

DMOZ graphs

Graph
Closeness Centrality Harmonic Centrality Lin’s Index

Avg Max Avg Max Avg Max

T 0.042939 1 2.57 3.25 1.74 1.87

S 0.256610 1 1.77 589.92 1.51 520.00

R 0.077657 1 114.28 16179.53 109.03 14441.91

G 0.000142 1 25409.22 43242.16 24430.69 39754.73

As can be seen in table 6, all the graphs exhibit a maximum Closeness

Centrality value of 1. In particular, the children of the root node of the main

taxonomy have a value of 1 for the Closeness Centrality measure, given that the

only co-reachable node for them is, in fact, the root node. By definition, the Lin’s410

index of a node i is the product of the Closeness Centrality value and the square

of the number of co-reachable nodes of i. Such index corresponds to a weighting

scheme for a more accurate estimation of centrality. Furthermore, the Harmonic

Centrality tries to capture centrality in a more representative way, taking the

harmonic mean of the distances of a node i from its co-reachable nodes. For415

the case of Closeness Centrality, the highest average value corresponds to the

S-subgraph, with a 25%, indicating a better mean connectivity for the nodes

in that network, according to that measure. However the remaining measures,

namely the Harmonic Centrality and Lin’s index, point out graph G as the

most connected network, and in some cases the difference of the average values420

is about two orders of magnitude, as seen in table 6. A deeper analysis on the

individual nodes could lend more insights into the accuracy of each measure on

the estimation of centrality.
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4.3.7. Degree Distributions

Scale-free networks are those having degree distributions with power-law be-425

havior, as explained in the Background section. The charts in figure 7 show out-

and in-degree distributions in log-log scale for the DMOZ graph and its three

subgraphs. For instance, the in-degree distribution plots of the R-subgraph and

graph G, as well as the out-degrees of the T-subgraph, S-subgraph and G, reveal

a possible power-law behavior. The clear power law distribution that exhibits430

the in-degree for the R-subgraph is probably the result of the arbitrary process

of topic association resulting from the editors’ criteria. This effect is observed

in a lower scale for the in-degree of the S-subgraph. For the R-subgraph, we can

observe the existence of highly disproportionate in-degree values, as is the case

of topic “Regional/ North America/ United States/ Arts and Entertainment/435

Music” with 2.341 incoming links. Given that the S-subgraph represents an al-

ternative taxonomical classification, topic association is guided by a mechanism

less arbitrary than for the R-subgraph, reflecting the notion of topic inheritance.

Note that given the tree structure of the T-subgraph, its in-degree is always 1,

except for the root node whose indegree is 0.440

Regarding the out-degree there is a strong evidence of a power law distri-

bution for the T- and S-subgraphs. However, the absence of a long tail in the

R-subgraph rules out a possible power-law behavior for this subgraph.

Figure 7: In-degree and Out-degree distributions in log-log scale for the DMOZ graphs

A careful analysis of the out-degree charts of T, S and G in figure 7 reveals a

slight curvature, turning the trend line smoothly concave. If this effect is strong445
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enough, the corresponding distributions could actually depict exponential rather

than power-law behaviors [13].

Table 7: Scaling exponents of in-degree, out-degree and degree (for underlying undirected

graphs) distributions for the DMOZ graphs

Graph γi γo γ

T - 2.26 2.26

S 3.215 2.03 2.132

R 2.012 3.873 2.121

G 2.242 2.265 2.339

The goodness of fit of each dataset to a power-law distribution can be better

analyzed in terms of the scaling exponent in each case. The second and third

columns of table 7 show the in- and out-degree scaling exponents. Because of450

the curvature mentioned in the previous paragraph, exponential distributions

could fit these models better than power-law distributions, according to Clauset

et al. [13]. The highest value observed in the exponents is associated with the

out-degree of the R-subgraph, and is close to 4, reinforcing the idea of a scale-

free behavior for that subgraph. Also the S-subgraph has a fairly high scaling455

exponent for its in-degree.

The fourth column of table 7 shows the scaling exponents of the undirected

versions of the DMOZ graphs. The fact that the scaling exponents for the degree

distributions of all the analyzed undirected graphs are greater than 2 but smaller

than 3 indicates that they have a well-defined mean but do not have a finite460

variance, as is the case for most recognized power laws in nature. On the other

hand, for the particular cases of the in-degree distribution of the S-subgraph and

the out-degree distribution of the R-subgraph, it can be stated that they have

a well-defined mean and a finite variance according to the theory of power-law

distributions [33], given that their scaling exponents are higher than three.465
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4.4. Visual analysis of centrality and connectivity

A number of relevant properties can be illustrated or derived from the vi-

sualization of the analyzed graphs. Nevertheless, visualizations for depicting

certain phenomena are sometimes hard to obtain for the entire graph. The next

subsections show selected visualizations that exhibit and reinforce findings de-470

rived from the centrality and connectivity analysis carried out in this article. In

some cases, the visualizations are presented for the entire graph, while in others,

a strategically selected subgraph is visualized to illustrate specific phenomena.

4.4.1. K-Core Decompositions

The LaNet-Vi software tool [2] was employed for rendering panoramic images475

of the distributions of nodes in the DMOZ graphs, according to the k-core

decomposition algorithm [38]. As this tool was designed for undirected graphs,

all edges in the graphs were transformed to undirected edges. Note that a pair of

reciprocal edges in a directed graph becomes a single edge in the corresponding

undirected graph. Figure 8 shows the visualizations of the corresponding k-480

core decompositions for the four DMOZ graphs. As is expected from the tree

structure of the T-subgraph the value of all the shell degrees (except for the root)

is 1. The different lengths of the branches in T have an interesting effect on the

k-core visualization. Since the diameter of a shell is a function of the number

of nodes belonging to that shell, the large number of leaves in the T-subgraph485

causes a big gap between the outer layer of the k-core decomposition and the

remaining layers. Such gap can be also appreciated in the visualizations of S-

and R-subgraphs suggesting, on the one hand, the existence of a great ratio of

nodes with very low degree, and on the other hand, a very high difference of

degrees between the former set of nodes and the remaining nodes.490

In the case of the S- and R-subgraphs, there are nodes that have shell de-

grees higher than 1, revealing that these graphs do not have a tree structure,

as it was expected. These two graph visualizations exhibit small circles over

the circumferences of their outer layers as well as within their displaced central

structures and within the gap between the most outer layer and the remaining495
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more inner layers. These circles correspond to clusters of nodes of the same

shell. As such clusters have edges connecting them to nodes of the inner lay-

ers, they cannot represent disconnected k-cores, and should have considerably

more links to nodes of the outer layers than the rest of the nodes in the inner

circles, according to the k-core decomposition algorithm. There are more nodes500

with high shell degree in the R-subgraph visualization, and the shell degrees

are slightly higher in that graph than in the S-subgraph. The images of the

S- and R-subgraphs exhibit particular filling patterns in their inner layers that

correspond to the rendering of a very large number of edges inside the k-cores.

The color of each of these edges depends on the k-core of its source and target505

nodes.

Graph G exhibits well-separated cores, and low overlapping among the cores,

suggesting a regular structure in the connections between nodes. It is also

remarkable the existence of small circles outside the border of the central core,

that could imply the existence of smaller communities of topics with very few510

connections to the nodes of that core.

4.4.2. Strongly Connected Components of G

Three strongly connected components of the graph G are visually repre-

sented in figure 9, using the Gephi and LaNet-Vi software tools. For the Gephi

visualization of the largest SCC of G (bottom left) labels are displayed only for a515

small number of nodes with very high degree. The purpose of a visual analysis

of a SCC is to identify connectivity patterns that give place to a characteri-

zation of the corresponding subgraph. Another feature that can be observed

through the visualizations in figure 9 is the strong cohesion among the topics

included in some SCC’s. Regarding this fact, it is important to state that all520

the nodes in the first two SCC’s are highly related to one another, within each

SCC. The nodes of the component at the top-left corner of the figure are all

descendant of topic “Games/ Video Games”, and refer to cheats and hints of

video-games of different genres and platforms. Besides, the nodes of the com-

ponent at the middle-left part are related to descendants of “World/ Italiano”525
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Figure 8: K-core decomposition visualizations of the DMOZ graphs

that have the name “Immobiliari” and correspond to the topic “Real-Estate” in

different regions of Italy. Finally, the nodes of the component at the bottom-left

corner belong to the greatest SCC found in G. The “Video-games” component

consists of 128 nodes, the “Real-estate” component consists of 122 nodes and

the greatest SCC is composed by 267,541 nodes. According to the Gephi and530

LaNet-Vi visualizations, the maximum degree found among the nodes in the

“Video-games” SCC is 57 (68 for the directed graph) and is associated with

the most representative topic in that component, namely “Top/Games/Video

Games/Cheats and Hints”. For the case of the “Real-estate” SCC, the highest

degree is 21 (40 for the directed graph), corresponding to the main topic “World/535

Italiano/ Regionale/ Europa/ Italia/ Affari e Economia/ Immobiliari”. In con-

trast to this, the greatest SCC of G has a highest degree of 2,353 (2,356 for the
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directed graph). The highest shell degree values for the k-core decompositions

are 4, 3 and 12 for each of the three analyzed SCC’s. The first two components

are two samples of cohesive groups of nodes arising from the process of SCC540

decomposition. Even though a deeper analysis is required, this could imply that

meaningful relatively small topical communities can be found by applying the

SCC detection algorithm. On the other hand, for the largest SCC it is possible

to identify topics that are not semantically related, as is the case for “Music”,

“Windows”, “Business and Economy”, etc.545

4.5. Connectivity and Centrality of some relevant topics

This section offers a focalized analysis of DMOZ by identifying specific top-

ics that consistently present high centrality and connectivity values for the an-

alyzed DMOZ graphs. Table 8 specifies the graphs where these topics exhibit

the highest values and reports their associated centrality and connectivity mea-550

sures, including degree, betweenness centrality, closeness centrality, harmonic

centrality and Lin’s index.

A comprehensive analysis of the clustering coefficient (CC) has revealed that

there is a great number of nodes achieving the maximum value for each graph.

Besides, these specific nodes do not exhibit relevant values for the remaining555

measures, and the nodes of table 8 do not have particularly high CC values. As

a consequence, the clustering coefficient column is omitted in this table.

5. Discussion

The analysis presented in this article provides insight about several aspects

of the DMOZ topic ontology. Among the most important aspects in model-560

ing a network are the communication patterns between its actors. It is well

known that small-world networks [41] exhibit good communication capabilities.

For the case of DMOZ, good communication patterns imply ease of navigabil-

ity. As mentioned earlier, different analyses in cognitive science have revealed

that semantic networks of words and concepts exhibit the small-word property565
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Figure 9: Gephi (left) and LaNet-Vi (right) visualizations of three SCC’s of G. At the top,

the SCC corresponding to the topic “Video Games”. At the middle, the SCC corresponding

to the topic “Immobiliari” (Real-estate) in Italy. At the bottom, the greatest SCC of G

([39, 7, 31]), which implies that words and concepts tend to form semantically

cohesive communities, and most words and concepts are typically at a short
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Table 8: Most central topics of DMOZ graphs. The rows correspond to the topics. The

columns are associated with the connectivity and centrality measures considered. Each cell

of the table enumerates the graphs where the corresponding topic has the highest value.

Topic Degree Betweenness

centrality

Closeness

centrality

Harmonic

centrality

Lin’s

index

Regional G

Adult G

Science/ Environ-

ment

R R R

World/ Español/

Artes/ Cine

S S S

Regional/ North

America/ United

States/ Arts and

Entertainment/

Music

R, G

semantic distance between each other. We argue that these phenomena should

also manifest themselves in well-specified topic networks since it is natural for

topics and subtopics to form thematically coherent clusters. In addition, it is570

commonly agreed that “all knowledge is connected to all knowledge” and there-

fore it is expected that most topics be directly or indirectly related through

short meaningful paths. As a consequence, we state that a good network topol-

ogy for a topic ontology should be one in which nodes tend to cluster together

(high Average Clustering Coefficient) and in the meantime most nodes should575

be reachable from any other node in a few steps (small CL and CPL), providing

good navigability among topics.

The scale-free structure seems to also be a feature of the analyzed DMOZ

graphs. The degree distributions shown in figure 7 and the scaling exponent
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values for the in- and out-degree distributions as well as for the degree distribu-580

tions of the undirected graphs presented in table 7 indicate that all these data

fit power laws. However, studies on the process of formation and evolution of

the underlying networks are required to draw conclusions on related concepts

such as network growth and preferential attachment [3].

There are some nodes that seem to be consistently central under different585

graphs and metrics as seen in table 8. Such is the case of the general topics

“Regional” and “Adult”. This consistency is observed also for the topic “Sci-

ence/ Environment” and highly specific topics, i.e. topics placed in deep levels

of the taxonomy, as is the case of “World/ Español/ Artes/ Cine” and “Re-

gional/ North America/ United States/ Arts and Entertainment/ Music”. This590

fact can be the effect of the multiplicity of links from other topics, which may

be due to different classifying criteria employed by the editors of the DMOZ di-

rectory. Regarding topic “Regional/ North America/ United States/ Arts and

Entertainment/ Music”, it is pointed out as the node with highest degree both

in G and in the R-subgraph. This is due to the high number of incoming links595

to this node in the R-subgraph. Also, this is the most connected node of the

greatest SCC of G, as seen in figure 9.

6. Conclusions and Future work

This article described the application of complex network theory to the study

of the DMOZ topic ontology. The set of analyses presented offer a character-600

ization of the most important topological aspects underlying the large-scale

structure of DMOZ. According to the results obtained from these analyses, the

largest human-edited topic ontology in the web exhibits a number of interest-

ing non-trivial regularities also found in other natural and artificial complex

networks.605

The main regularities encountered in DMOZ are the small-world and scale-

free phenomena. Despite the power-law behavior exhibited by the degree fre-

quency histograms of the DMOZ graphs, according to Clauset et al. [13] further
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statistical analyses should be carried on to determine whether other statistical

distributions fit better the corresponding networks. The scale-free behavior is610

not only reflected in the degree distribution but also in the power-law distribu-

tion of SCC sizes.

Scale-free networks are often dynamically growing networks. Evidence about

the temporal dynamics of the DMOZ network still needs to be gathered and

investigated. In order to characterize the evolution process of the associated615

semantic network, further algorithmic models should be designed and simulated,

with knowledge about the relative age of each node in the DMOZ graph. An

approach similar to the one described by Steyvers et al. [39] could be employed

for this analysis, considering possible indicators of the time when each topic

was added to the taxonomy. Such studies could also be linked and contrasted620

with the semantic networks of subject memories analyzed by Morais et al. [31].

Besides, the evolution process of the DMOZ ontology should be analyzed in

order to determine whether a preferential attachment mechanism occurs favoring

the oldest topics in the directory, as described by Downes [17] regarding the

power-law nature of connective knowledge.625

Some interesting conclusions emerge in relation to the detection of SCC’s

in the DMOZ graphs. In the first place, as seen in the Visual analysis section,

the small SCC’s exhibit cohesive topical communities. The existence of a Great

SCC suggests further studies, including calculations of specific measures as the

Percolation Threshold, intended as the number of nodes that should be removed630

from the network in a targeted attack for causing the disappearance of the Great

SCC. A similar study has been carried out by De La Torre et al. [16].

Different from many studies on complex networks, the analysis performed

here is not carried out on a sample but on the totality of the DMOZ network,

avoiding possible artifacts that may result from incompleteness or sampling635

biases. In spite of that, some artifacts are still observable, which we argue may

result from existing constraints on the ontology structure, such as its underlying

taxonomic hierarchy.

As stated by Resnik [37] and further discussed by Xamena et al. [42], while

30



topological measures can provide useful insights into the similarity and relevance640

relation existing between concepts or topics, proximity is sometimes ineffective

as an estimator of the semantic relation between objects in certain classes of net-

works where links do not represent uniform distances. An analysis of a network

that is based only on topological aspects and disregards a deeper analysis of the

content of the nodes and the semantic of the relations seems to be insufficient to645

derive meaningful measures of topic relevance and semantic similarity. As part

of our future work we plan to investigate if the combination of topological fea-

tures and content-based features of DMOZ can be used to infer good predictors

of topical relevance and similarity. This kind of relations are observed in the

work of Mika [30], where it is stated that the most general concepts often present650

low Clustering coefficients and high BC values, and the most specific concepts

exhibit exactly the opposite behavior in semantic networks. Another interest-

ing ingredient in the work of Mika [30] that could be employed in DMOZ is the

inclusion of the social component in semantic networks by means of the widely

known “folksonomies”. Those structures can derive better semantic schemes in655

particular types of social contexts.

Finally, in order to gather additional insight into the structure of DMOZ,

we plan to analyze whether correlations exist between some of the measures

reported in this study, or between these measures and the number of websites

indexed under the topics. We also plan to investigate whether correlations be-660

tween nodes of similar degree exist with the purpose of measuring assortativity,

which is a tendency commonly observed in some networks where nodes tend to

attach to other nodes that are similar in some way.
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