
UN
CO

RR
EC

TE
D

PR
OO

F

A R T I C L E I N F O

Article history:
Received 2 July 2014
Received in revised form 29
November 2016
Accepted 2 December 2016
Available online xxx

Keywords:
P2P systems
Thematic search
Semantic communities

A B S T R A C T

The Internet is a cooperative and decentralized network built out of millions of participants that store and
share large amounts of information with other users. Peer-to-peer systems go hand-in-hand with this huge
decentralized network, where each individual node can serve content as well as request it. In this scenario,
the analysis, development and testing of distributed search algorithms is a key research avenue. In particu-
lar, thematic search algorithms should lead to and benefit from the emergence of semantic communities that
are the result of the interaction among participants. As a result, intelligent algorithms for neighbor selec-
tion should give rise to a logical network topology reflecting efficient communication patterns. This paper
presents a series of algorithms which are specifically aimed at reducing the propagation of queries in the
network, by applying a novel approach for learning peers’ interests. These algorithms were constructed in
an incremental way so that each new algorithm presents some improvements over the previous ones. Sev-
eral simulations were completed to analyze the connectivity and query propagation patterns of the emergent
logical networks. The results indicate that the algorithms with better behavior are those that induce greater
collaboration among peers.
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1. Introduction

The current information age has facilitated the generation, publication and access to geographically spread resources and het-
erogeneous content. A peer-to-peer (P2P) system uses the computational power and the bandwidth of the participants instead of
relying on a small number of servers (Balakrishnan, Kaashoek, Karger, Morris, & Stoica, 2003; Merabti, Liu, Yu, & Kundur,
2010). In recent years, many techniques for sharing and searching information on P2P networks have been proposed (Tigelaar,
Hiemstra, & Trieschnigg, 2012), leading to new opportunities to preserve, foster and exploit the diversity of social communities
on the Internet. In this scenario, we can identify several research challenges for developing mechanisms to manage and access dis-
tributed resources in a variety of formats. While research on P2P systems has facilitated the implementation of robust distributed
architectures, there are still several limitations faced by current search mechanisms. In particular, these mechanisms are unable
to reflect a thematic context in a search request and to effectively take advantage of the peers’ interests to improve the network
communication patterns.

P2P network topologies are typically classified as structured (Korzun & Gurtov, 2013) or unstructured (Jin & Chan,
2010), while some networks combine some properties of both (Rosenfeld, Goldman, Kaminka, & Kraus, 2009). A struc-
tured network is organized into a specific topology with a protocol aimed at ensuring a reasonable search performance. On
the contrary, an unstructured network does not follow a specific pattern for the organization of its nodes and has a ran-
dom or irregular topology. Because of this lack of structure, these networks have a relatively low search efficiency com-
pared with the structured ones. As a consequence, the study of algorithms that improve search efficiency in unstructured
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P2P systems has been a relevant research area for some years (e.g. Tang, Xu, & Dwarkadas, 2003; Radicchi, Castellano, Cecconi,
Loreto, & Parisi, 2004; Du, Wang, & Wu, 2008; Zhu, Wu, & Wang, 2009; Wang, 2011).

Current search services are rigid as they do not offer mechanisms to facilitate users access to information about possibly rele-
vant topics with which they might not be familiar. Another limitation of the current search model is the lack of context sensitivity.
Although some websites offer tools for personalized search, most of such tools lack of proper mechanisms to facilitate contextual-
ization and collaboration. These factors are crucial in thematic and distributed search environments. In a distributed search model,
participants collaborate by sharing the information stored on their computers. Differently from the client-server model, P2P sys-
tems have the capability of increasing their performance as the number of users increases. To take advantage of this potential it
is necessary to develop adaptive and collaborative mechanisms to exploit the semantics of the users’ communities, the resources
that they store and their search behavior.

The main goal of this work is to provide unstructured P2P systems with mechanisms for context-based search and to propose
algorithms that incrementally learn effective communication patterns in pure P2P networks.1 In these networks, each participant
operates in an autonomous manner, without relying on a specific server for solving communication and coordination tasks. In
other words, peers can make decisions in an autonomous way in order to route queries to potentially relevant nodes based on the
acquired knowledge about other peers’ interests. An important aspect of our proposal is that there is no initial knowledge about
where the information is stored. Our work focuses on studying how this knowledge can be acquired. In particular, eight algo-
rithms are proposed that enable peers to learn how to route queries to relevant nodes. This collective learning process leads to the
emergence of semantic communities, resulting in a logical network with improved communication patterns.

We compute the “clustering coefficient” of the emergent logical network to quantify the learning rate of the peers. Our simula-
tions indicate that the most intelligent algorithms give rise to logical networks with higher clustering coefficients, clearly indicat-
ing the emergence of semantic communities. The existence of these communities reduces the scope of query propagation through
the network, resulting in more effective communication patterns.

This article is organized as follows. Next section presents some background concepts used in the rest of the paper. Section 3
discusses the state of the art in the area, reviewing recent related work. The main contribution of this work is introduced in
Section 4, where eight algorithms for thematic P2P search are described. The results of evaluating these algorithms through ex-
tensive simulations are analyzed in Section 5. Finally, Section 6 summarizes the conclusions and discusses some future research
directions.

2. Background

A possible solution to improve communication overhead and scalability in large-scale unstructured P2P systems is to forward
queries to a group of peers that are known to be potentially useful to answer the query. The selection of potentially useful peers is
typically based on the peer’s past activity or their semantic similarity to the original query (Barbosa, Costa, Almeida, & Almeida,
2004; Voulgaris, Kermarrec, Massouli, & van Oteen, 2004). A semantic community, in the context of a P2P network, is a group
of nodes sharing common or related information. A concept associated with semantic community is semantic locality (Yan &
Zhan, 2004). Traditionally, the notion of semantic locality has been used to refer to the ability to store information about peers
offering semantically close services. Semantic locality has also been defined as “a logical semantic categorization of a group of
peers sharing common data” (Sharan, 2006). The performance of routing algorithms in P2P networks can be improved by ap-
plying mechanisms that exploit the notion of semantic locality. These routing algorithms help peers to predict which other peers
have knowledge useful to respond a query in a few steps and without overloading the system bandwidth (Tirado, Higuero, Isaila,
Carretero, & Iamnitchi, 2010). This makes possible that a query be efficiently propagated in the network through relevant nodes,
and suggests that collaborative and distributed search can benefit from the user context and the existence of semantic communi-
ties.

In order to evaluate the connectivity and communication patterns of the emergent logical networks we study several of their
structural features, such as small-world topology (Steyvers & Tenenbaum, 2005; Watts & Strogatz, 1998), degree distribution,
and k-core decomposition (Seidman, 1983). We also study the emergence of semantic communities by applying a methodology
similar to the one used in Akavipat, Wu, Menczer, and Maguitman (2006).

2.1. Clustering coefficient

The local clustering coefficient quantifies the nodes’ tendency to cluster together in a single node’s immediate network
(i.e., the node and its neighbors) (Watts & Strogatz, 1998). In order to represent a network we will consider an undirected
graph in which V is the set of nodes and E is the set of edges. We will write e ij to denote an edge from

1 This article extends preliminary work on thematic search in a P2P context presented by the authors in a conference paper in 2013 (see Nicolini, Lorenzetti,
Maguitman, & Chesñevar, 2013).
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node v i to node v j. For a node v i, its neighborhood N i is defined as the set of nodes v j immediately connected to v i, that is,

The local clustering coefficient is based on the network’s density or local density (Burt, 1992; Everett & Borgatti, 2005). For
each node v i, this is measured as the fraction of the number of edges connecting v i’s neighbors over the total number of possible
edges between v i’s neighbors. Let k i be the number of neighbors of a node v i, that is, |N i|. If a node v i has k i neighbors then there
are at most edges among the nodes within the neighborhood (if the neighborhood is fully connected). Therefore,
the local clustering coefficient for a node v i in an undirected graph can be computed as follows:

In order to calculate the clustering coefficient for the whole network, the individual local clustering coefficients are averaged
across all nodes (Watts & Strogatz, 1998). Let n be the number of vertices in the network, that is |E|. The network’s average clus-
tering coefficient is computed as:

2.2. Small-world topology

A graph or network is considered small-world if its links are globally sparse (the network is far from being fully connected),
its C average is higher than the average clustering coefficient associated with a random graph and the length of the path connecting
two nodes is orders of magnitude smaller than the network size (Watts & Strogatz, 1998).

This notion is typically representative of the global knowledge of the network and was selected in this work to compare the
ability of the proposed algorithms to spread information associated with the nodes across the network. When the amount of infor-
mation about the nodes in the network is insufficient, C average is small. However, as this information grows, the value of C average
will grow as well. In addition, only a few hops are needed to send a message from the message’s originator to its recipient, indi-
cating that the length of the path connecting the originator and recipient nodes is small.

2.3. P2P Architectures

P2P systems are decentralized, large-scale computer networks, where peers operate as clients and servers at the same time.
Peers can join and leave the system at any time. The power of P2P systems lies in their capability to provide services with practi-
cally unlimited scalability based on the principle of resource sharing (Tigelaar et al., 2012).

Search performance in a P2P system is highly dependent on the architecture of the underlying network, which can be charac-
terized as centralized, decentralized–structured, or decentralized–unstructured:

Centralized: Napster (Carlsson & Gustavsson, 2001) and other similar systems have a directory hosted at central locations. Nodes
in the P2P networks send their queries to the central directory server to find which other nodes hold the desired files. This ap-
proach does not scale well and is not reliable, as it has critical points of failure.
Decentralized – Structured: These systems have no central directory server but the connections between the nodes are controlled
and the files are not placed at random but at specific locations that will make queries easy to satisfy. Freenet 2 is an example of
such systems.
Decentralized – Unstructured: These are systems in which there is neither a centralized directory nor any control over the net-
work topology or file placement. Gnutella (Ripeanu, 2001) is possibly the best-known example of this type of architecture. The
network is constituted by nodes that join the network following some loose rules. The resultant topology has certain properties,
but the placement of files on individual nodes is not based on any knowledge of the topology. To find a file a node queries its
neighbors, typically using flooding as the communication method, where the query is propagated to all the neighbors within a
radius. This kind of search does not scale well, generating large loads on the network participants and congestion on the whole
network unless specialized mechanisms for query routing are implemented.

2 http://freenet.sourceforge.net.
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In this paper, we focus on decentralized unstructured P2P network architectures. Therefore, our main goal is to develop intel-
ligent mechanisms for improving communication patterns.

3. Related work

Preliminary work on intelligent algorithms for P2P search (Nicolini et al., 2013) provided the basis for the work presented
here. In contrast with this article, that preliminary work did not include all the algorithms presented here, nor an extensive empir-
ical analysis and comparison of their associated results in the context of the state-of-the-art in P2P search.

Much research has focused on how to structure the network for routing queries in P2P systems. A proposed solution is to cre-
ate a two-layer architecture: the upper one is the semantic layer that controls the super peers, whereas the lower layer is in charge
of getting the relevant files (Eftychiou, Vrusias, & Antonopoulos, 2012). Other approaches that use super peers were proposed
in Ismail, Quafafou, Nachouki, and Hajjar (2010), where decision trees are used to improve search performance for information
retrieval. A novel approach of a hybrid forwarding framework is presented in Yu, Gerla, and Sanadidi (2015). The flexibility of
this framework allows to perform proactive or reactive content discovery based on content characteristics. The framework utilizes
the content identifiability and name prefixes to classify time-sensitive data with the purpose of applying the most suitable strategy
to each category. For proactive content dissemination they propose a Hierarchical Bloom-Filter based Routing algorithm (Broder
& Mitzenmacher, 2004).

There is an increasing interest in algorithms that dynamically modify the topology of the logical network, guided by mecha-
nisms that allow participants to learn about the topics associated with the resources offered by other participants as well as their
information needs (Akavipat et al., 2006; Du et al., 2008; Radicchi et al., 2004; Tang et al., 2003; Wang, 2011; Yeferny & Arour,
2010; Zhu et al., 2009). These systems offer a way to relax the restrictions imposed by a centralized, planned and sequential con-
trol, resulting in decentralized and concurrent systems with collective behaviors (Watts & Strogatz, 1998). In Meng, Ding, Peng,
and Yue (2013) an algorithm is proposed that partitions the P2P network into different clusters based on their interests, giving rise
to a hierarchical structure. A metric is defined to calculate the similarity between the node and cluster vectors to determine if a
given node can join a cluster or not.

Algorithms that route queries based on peers’ interests have attracted increasing research interest. For example, the algo-
rithm presented in Sripanidkulchai, Maggs, and Zhang (2003) adds new connections to the Gnutella overlay network, linking
nodes which share similar interests. Experimental results show that this algorithm can avoid unnecessary flooding, improving
significantly the system performance. CAC-SPIRP (Guo, Jiang, Xiao, & Zhang, 2004) is a fast and low-cost P2P searching algo-
rithm where peers holding large amounts of content self-identify and self-organize themselves into clusters; those queries most
likely to be satisfied are the first to be routed. In this work, it is shown that by exploiting search interest locality it is possible to
achieve significant performance improvements. A method for modeling users’ interest in P2P document sharing systems based on
k-medoids clustering is presented in Qin, Yang, and Liu (2014). In the proposed approach an overlay network is created based on
the k-medoids clustering algorithm, which is combined with the users’ historical queries to improve the initial user interest model.

Some algorithms apply local environment strategies for exploring the network and learning about other peers to improve
search performance (Gómez Santillán, Cruz Reyes, Meza Conde, Schaeffer, & Castilla Valdez, 2010). These self-adaptive algo-
rithms were specially developed to route text queries regardless of their topic. An algorithm based on flooding that forwards the
query to the most effective nodes in an unstructured P2P network, without considering semantic communities, is presented in
Sujeeth, Kumar Kond Reddy, and Kumar Reddy D. (2013). In Kalnis, Ng, Ooi, and Tan (2006) some queries are paused with the
purpose of reducing flooding. In the meantime, a set of peers examine the messages that pass through them and take advantage of
the results of similar queries originated in other parts of the network to provide a response to those messages.

There is a wide variety of search engines based on P2P technologies. For example, the model proposed by the YouSearch pro-
ject (Bawa, Bayardo Jr., Rajagopalan, & Shekita, 2003) takes a centralized Napster-like design for query routing, where several
participants can simultaneously find and index different portions of the web. Other systems such as NeuroGrid (Joseph, 2002)
attempt to send queries to potentially useful nodes. Most of these systems use automatic learning techniques to adjust the meta-
data that describes the content of the nodes. Currently, there exist some software tools for decentralized search such as Faroo3 and
Yacy.4

An efficient algorithm named state-based search (SBS), which routes queries according to nodes’ state information, is pre-
sented in Wu and Wu (2013). Experimental results show that the SBS algorithm is able to effectively improve performance by
reducing search response time and achieving better load balance. Each SBS node maintains a state-based shortcut list with other
nodes’ state information. In SBS, efficient search can be achieved by discovering the nodes that share the desirable resources
according to a local fuzzy logic-based routing algorithm.

3 http://www.faroo.com.
4 http://www.yacy.net.
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Moderating query routing overhead through congestion control has also proven to be an alternative to improve query pro-
cessing (Shen et al., 2016). This method attempts to moderate query routing overhead through congestion control. This method
assures alternative routing paths to balance the query load among the peers under higher network churns. The method relies on
the Collaborative Q-Learning algorithm, which learns network parameters such as processing capacity, number of connections,
and number of resources in the peers, along with their congestion degree.

The analysis presented in Li et al. (2003) suggests that information retrieval in P2P networks is not feasible at the Web scale
due to the overhead introduced in peers’ communication. However, subsequent studies indicate that this overhead could be sig-
nificantly reduced by developing systems that minimize the number of sent messages per query while keeping a high degree of
precision and recall (Zeinalipour-Yazti, Kalogeraki, & Gunopulos, 2004). In these systems it is crucial to predict which nodes are
appropriate to receive a query. Several research results have confirmed that grouping the participants by semantic similarity leads
to an increment in the system efficiency (Akavipat et al., 2006; Barbosa et al., 2004; Crespo & Garcia-Molina, 2002; Doulamis,
Karamolegkos, Doulamis, & Nikolakopoulos, 2009; Zeinalipour-Yazti, Kalogeraki, & Gunopulos, 2005). Following this strand
of research, our work presents an objective study of the performance of different search strategies based on the concept of “se-
mantic locality” in a distributed system.

4. Algorithms

This section describes a series of algorithms that offer a solution to the problem of searching in a decentralized, unstructured
P2P system. Except for Algorithm 1.0, all these algorithms share the same basic structure: each node has an NT table (Nodes’
Topic table) in which the learned knowledge is stored. An entry in this table consists of a topic and a set of nodes that are inter-
ested in this topic. A node is considered to be interested in a topic when it has a directory of articles related to this topic.

The main differences between the algorithms are the update policy adopted by each of them for updating the NT table and the
mechanisms for selecting a neighbor for query propagation. We will use simplified hypothetical networks as the one presented in
Fig. 1 to describe the behavior of the proposed algorithms.

In the rest of this article, dashed nodes will be the ones that generate a query, while dotted nodes will be the ones that intro-
duce new knowledge. Dashed arrows will represent the path of a query, and dotted arrows will indicate the path followed by a
response. In addition, dashed-dotted arrows will be used to represent the path of the update messages. We adopt a basic version
numbering scheme to indicate that an algorithm incorporates improvements over a previous version. For instance, Algorithm 2.1
is an optimization of Algorithm 2.0. It should be noted that during the development of these algorithms we have assumed that a
node always generates queries related to the topics in which it is interested.

4.1. Algorithm 1.0

This algorithm does not have any learning capability and therefore does not require the use of an NT table for each peer. The
queries are routed in a brute-force search manner, as in Gnutella (Ripeanu, 2001). Each time a node generates a query it sends
the message to every adjacent node. If a node that receives a query message can reply, it sends a reply message. Otherwise, it
forwards the query to its adjacent nodes until exhausting the initially defined number of query hops. The maximum number of
hops allowed is usually referred to as the time to live (TTL) parameter. Fig. 2 shows the behavior of this algorithm.

4.2. Algorithm 2.0

In this algorithm, when a node generates a query message, it first consults its NT table to find out which nodes are in-
terested in that topic. Then one of these candidate nodes is selected in a random way and the query is sent to this node. In
the case that the query-issuing node does not have an entry for this topic in its NT table, it sends the query message to all
of its adjacent nodes, in the same way as Algorithm 1.0. The learning phase occurs with the reply message. When a node

Fig. 1. Example network.
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Fig. 2. Query and reply messages for Algorithm 1.0.

can reply a query, it sends a reply message that follows the same path as the query. Each intermediate node in this path updates
its NT table with the topic of the query that is being answered and the node that answered it.

For the sake of example, Fig. 3 shows the messages involved in a scenario where node 1 issues a query that matches a file
stored on node 5, while node 1 knows node 5 through its NT table. On the other hand, Fig. 4 illustrates the situation in which node
1 does not know node 5.

4.3. Algorithm 2.1

The difference between this algorithm and Algorithm 2.0 is that a query is sent to all the candidate nodes that are interested in
the query topic according to the knowledge stored in the NT table of the query-issuing node. Learning is performed in the same
manner as in the previous algorithm. Fig. 5 illustrates a situation in which node 1 issues a query that can be replied by node 5.
Node 1 knows through its NT table that nodes 4 and 5 are interested in the query topic, so instead of sending the query message
to only one of these nodes, it sends the query to both nodes simultaneously.

4.4. Algorithm 3.0

The behavior of the query and reply messages is the same as in Algorithm 2.1. However, this algorithm incorporates
the use of update messages. When a node learns new information it updates its NT table and then it sends an update mes

Fig. 3. Query and reply messages for Algorithm 2.0. Node 1 knows node 5.

Fig. 4. Query and reply messages for Algorithm 2.0. Node 1 does not know node 5.

Fig. 5. Query and reply messages for Algorithm 2.1.
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sage with the information learned—in the format (topic, node)—to all of its adjacent nodes. This new feature improves the learn-
ing rate of the network. In the previous algorithms, if a node is never found in the path of a reply message, it will not have the
opportunity to learn new information. On the other hand, in this new version a node not only learns if it is in the path of a reply
message but it also learns if it is adjacent to a node in this path.

Fig. 6 illustrates the case in which node 1 does not have node 5 in its NT table. Dotted nodes are those that learn which are the
interests of node 5. We add a new edge to the hypothetical network to illustrate this situation. It should be noted that node 2 learns
the interests of node 5 and therefore this knowledge is propagated with an update message only to the adjacent node 3. This is due
to the fact that node 5 is the responding node and node 1 is in the response path.

4.5. Algorithm 3.1

This version differs from Algorithm 2.1 only in the initialization of a node that becomes part of the network. When a node
joins the network, it sends an update message to all its adjacent nodes. So its immediate neighbors can know which is the new
node, as well as its associated interests. Fig. 7 shows the behavior of a node (node 3 in this case) joining the network.

4.6. Algorithm 3.2

Algorithm 3.2 has a small difference with respect to Algorithm 3.0: when a node sends an update message to its neighbors,
each of them forwards the original message to its own neighbors. In all the cases, it avoids forwarding the message to the node
from which the message came. Fig. 8A illustrates the first hop: node 3 sends an update message to its neighbors. Fig. 8B shows
the second hop: nodes 1, 4 and 6 forward the message to its own adjacent nodes. Dashed-dot-dot edges in Fig. 8B represent the
first hop messages while the dashed-dot edge represents the second hop.

Fig. 6. Query, reply and update messages for Algorithm 3.0.

Fig. 7. Update messages for Algorithm 3.1.

Fig. 8. Update messages for Algorithm 3.2.
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4.7. Algorithm 3.3

This algorithm incorporates the following changes with respect to version 3.0: when a node receives a reply message with a
topic that is interesting for this node, it sends an update message to all of its adjacent nodes and to all the nodes which are “known”
(through its NT table) to be interested in the topic of the reply message. This algorithm allows knowledge to propagate inside the
community. Fig. 9 shows an example in which node 3 is interested in a particular topic and receives a reply message associated
with this topic. Node 3 knows that nodes 2 and 5 are in its semantic community (interested in the same topic) and therefore when
node 3 receives a reply message, it sends an update message to its neighbor nodes and to its semantic community (nodes 2 and 5).

4.8. Algorithm 4.3.3

This algorithm maintains the behavior of the previous version except that nodes send update messages in additional situations.
If a query message arrives by broadcast and the node is interested in the topic of the query but cannot reply, it will send an update
message to the node that originated the query. This behavior avoids excluding nodes that do not have many resources. Fig. 10
presents an example illustrating this situation. Suppose that node 1 generates a query that can be replied by node 7, but node 1
does not know about node 7. In Fig. 10A the query message arrives to node 6 (which has at least one interest in common with
node 1), and therefore this node sends an update message to node 1. In Fig. 10B node 7 answers the query and the behavior is the
same as in Algorithm 3.3.

4.9. Algorithm 5.0

The difference between this algorithm and Algorithm 4.3.3 is that this version skips update messages to adjacent nodes, so in
this way update messages are sent only between nodes of the same semantic community. This algorithm keeps the learning rate
high but decreases the global number of update messages, reducing network traffic.

4.10. Main features of the algorithms

Table 1 presents a comparative summary of the eight algorithms described in this section based on their main features.
The proposed algorithms implement the essential characteristics of a number of existing P2P systems, abstracting away

minor details and parametrization issues and focusing mainly on their most salient features. Algorithm 1.0 implements the
flooding algorithm also implemented by the Gnutella System (Ripeanu, 2001), where queries are forwarded in a breadth-first
search until the TTL is reached. In the rest of the proposed algorithms, the use of routing tables and the exploitation of se-
mantic locality are the most relevant features. This relates with existing search methods based on routing indexes (Crespo
& Garcia-Molina, 2002), which use information about neighbors (stored in routing tables) to guide the search process. For
instance, the Learning Peer Selection approach (Arour & Yeferny, 2014) implements a method with the ability to discover
users’ topical preferences by analyzing their download history. This gives rise to nodes profiles

Fig. 9. Update messages for Algorithm 3.3.

Fig. 10. Query, reply and update messages for Algorithm 4.3.3.
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Table 1
A comparative summary of the algorithms’ main features.

Algorithm

Features 1.0 2.0 2.1 3.0 3.1 3.2 3.3 4.3.3 5.0

Query to adjacent nodes (always) – – – – – – – –
Query to adjacent nodes (only without
knowledge)

–

Query to the semantic community – a

Update to adjacent nodes – – – – b –
Update to the semantic community – – – – – –
Update when joining the network – – – – – – – –
Update to query-issuing node – – – – – – –

aOnly to one randomly selected member.
bTwo level propagation.

that are stored in tables. If the information stored in the tables is not sufficient to guide the search process, then the flooding ap-
proach is applied.

The concept of knowledge sharing is an emerging topic generally based on cooperation among peers. There is a fundamental
trade-off between sharing knowledge to improve the network’s global knowledge and the cost of sending the messages with this
information. Some of the algorithms proposed in this work (3.0–5.0) implement different variations of this concept through the
use of update messages.

The establishment of connections in the logical network implemented by the proposed algorithms is similar to approaches that
establish friendship relations, such as the one implemented in Self Learning Query Routing (Chen, Gong, & Huang, 2005). In
this routing algorithm, the interests of the peers are learned based on their search result history, which allows to automatically
construct friendship relations based on the similarity of users’ interests.

5. Evaluation

5.1. Simulation setting

Several simulations were carried out using realistic data to compare the performance of the proposed algorithms. Evaluations
were run with physical networks containing 1000 and 5000 nodes. These networks were generated using the Erdős–Rényi model
(Erdős & Rényi, 1959). The parameter p in the model was set in such a way that each node had an average degree of approxi-
mately 10 (e.g., for |N| = 5000, p = 0.002). To ensure the correct operation of the algorithms we verified that the generated physical
networks were connected. It is important to distinguish the notion of physical network from the one corresponding to logical net-
work. Physical networks remain static through all the runs, whereas logical networks change on each run since they are the result
of the evolution of the networks’ global knowledge. There are no centralized directories or indexes. Each node in these networks
is a content provider and an individual directory and is associated with one or more topics of interest.

The first challenge to address for carrying out a full comparative analysis was to select an appropriate simulation framework.
After a careful evaluation of different alternatives, we opted for the OmNet++ framework (Pongor, 1993; Varga & Hornig, 2008)
due to its flexibility and ease of use. The visualizations of the logical networks resulting from our simulations were created with
JUNG (Java Universal Network/Graph Framework) 5 and the k-core decomposition of the logical networks and the correspond-
ing visualizations were performed with the LaNet-vi tool 6 (Large Networks Visualization Tool). As input for our simulations,
we used 45,742 scientific articles obtained from the Scientific Electronic Library Online SciELO. 7 The articles were previously
classified into 12 different topics as shown in Table 2. These topics were distributed among nodes such that each node contains
one or more related topics. Subsets of these articles were assigned randomly to different nodes, with the only constraint that each
node should contain articles related to the node’s interests.

With the purpose of comparing the proposed algorithms for query routing, each algorithm was initially executed ten times with
a physical network of 1000 nodes. During each run, queries were issued by randomly selected nodes. The number of queries for a
run was 150 and the maximum number of hops before a query was discarded was set to 50. Every new run of the same algorithm
was able to take advantage of the knowledge learned during the previous runs. The comparison criteria used are the following:

5 http://jung.sourceforge.net.
6 http://lanet-vi.fi.uba.ar/.
7 http://www.scielo.org.
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Table 2
Number of articles associated with each topic.

Topic Number of articles

T1: Agricultural Science 2403
T2: Biological Science 4250
T3: Health Science 23,754
T4: Earth Science 2775
T5: Geosciences 197
T6: Social Sciences 1705
T7: Applied Social Sciences 4421
T8: Humanities 4652
T9: Engineering 1289
T10: Linguistics, Literature and Arts 164
T11: Mathematics 9
T12: Chemistry 123
Total number of articles 45,742

• The average clustering coefficient of the logical network.
• The number of queries that have been satisfied.
• The number of messages sent by each node, taking into account update messages to analyze whether such messages were con-

gesting the network.
• The number of hops needed to find an answer.

All the simulations were executed on a server with these characteristics:

• 32 processors (4 × 8 cores) Opteron.
• 128GB RAM
• Debian GNU/Linux 6.0 64 bits.
• kernel 3.8.3.
• Oracle JRE 1.7.0 21.

5.2. Communication patterns and small-word structure

Table 3 shows the performance of the evaluated algorithms based on the number of answered queries. The reported results
correspond to the first, third, fifth, seventh and tenth runs. The resulting data indicates that the number of answered queries is
higher in the first run of the algorithms, since in these cases the queries are blindly propagated through the whole network. As
new runs are completed, the number of answered queries decreases.

Table 4 and Fig. 11 show the average number of hops (rounded up to the nearest integer) needed to find an answer for a query.
In general, we can see that this number decreases as the overall knowledge of the network increases. Although we can notice
that this behavior does not hold for all the analyzed algorithms, the most evolved algorithms (versions 4.3.3 and 5.0) exhibit a
significant reduction in the number of hops from the first to the following runs.

The clustering coefficient was computed to analyze the evolution of the global knowledge of the network. A high clustering
coefficient usually indicates the presence of semantic communities in the network. Table 5 and Fig. 12 show that the average
clustering coefficient considerably increases throughout the runs. This is in agreement with the fact that during the latest runs the
global knowledge of the network is higher and nodes can send queries directly to potentially useful nodes.

Concerning the number of messages sent, we can see that this number decreases as the number of runs increases. This
is because the queries reach a useful node in fewer hops and as a consequence fewer messages are propagated. This result

Table 3
A comparison of the number of answered queries (|N| = 1000).

Answered queries

Algorithm

Run 1.0 2.0 2.1 3.0 3.1 3.2 3.3 4.3.3 5.0

1 92 142 125 115 100 106 110 135 128
3 80 81 98 99 94 98 97 97 94
5 63 87 92 90 93 92 93 94 89
7 120 84 97 88 102 100 86 83 95
10 75 80 94 92 104 97 92 91 98
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Table 4
A comparison of the number of hops taken to find an answer (|N| = 1000).

Hops

Algorithm

Run 1.0 2.0 2.1 3.0 3.1 3.2 3.3 4.3.3 5.0

1 30 37 49 48 46 46 45 25 29
3 29 48 39 27 6 32 8 2 2
5 29 46 20 12 5 8 26 2 2
7 28 49 18 7 5 17 3 2 2
10 30 50 21 7 5 10 9 2 2

Fig. 11. A comparison of the number of hops taken to find an answer (|N| = 1000).

Table 5
A comparison of the clustering coefficients (|N| = 1000).

Clustering Coefficient

Algorithm

Run 1.0 2.0 2.1 3.0 3.1 3.2 3.3 4.3.3 5.0

1 0 0.0984 0.1016 0.1955 0.2713 0.2921 0.3638 0.696 0.6862
3 0 0.1510 0.1548 0.2450 0.2754 0.3286 0.4806 0.7062 0.7013
5 0 0.1787 0.1676 0.2443 0.2788 0.3356 0.5146 0.7088 0.7052
7 0 0.1914 0.1826 0.2551 0.2805 0.3380 0.5228 0.7098 0.7093
10 0 0.2130 0.1906 0.2636 0.2827 0.3434 0.5274 0.7135 0.7099

is reflected in Table 6 and Fig. 13. It should be clarified that update messages are considered part of the set of sent messages.
The results reported in Table 7 and Fig. 14 indicate that Algorithm 5.0 sends fewer update messages than Algorithm 4.3.3,

while the associated global knowledge is not modified. Algorithms 2.0 and 2.1 do not implement update messages and the rest of
the algorithms show a lower amount of update messages, as they do not share their knowledge with their communities.

5.3. Scalability evaluation

Scalability is an important issue in P2P networks. Well-designed P2P networks are typically scalable due to the fact
that each peer potentially acts as a server. However, testing the scalability of a P2P routing algorithm using a centralized
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Fig. 12. A comparison of the clustering coefficients (|N| = 1000).

Table 6
A comparison of the number of sent messages (|N| = 1000).

Sent messages

Algorithm

Run 1.0 2.0 2.1 3.0 3.1 3.2 3.3 4.3.3 5.0

1 996,415 108,562 110,423 109,723 101,479 108,955 439,165 1,964,130 1,898,622
3 998,618 77,250 77,100 75,186 93,264 54,257 421,828 1,462,712 1,447,162
5 998,630 64,512 64,659 64,817 95,536 71,238 373,371 1,367,388 1,409,499
7 998,609 55,360 57,023 55,128 98,048 80,699 267,511 1,345,714 1,391,244
10 995,254 41,250 46,263 42,543 83,674 90,500 114,423 1,239,345 1,186,936

Fig. 13. A comparison of the number of sent messages (|N| = 1000).

simulation framework is challenging due to hardware limitations resulting from the use of a single server. It is important
to highlight that large scale simulations for P2P information retrieval systems are particularly memory intensive as they in-
volve the replication of a great number of search engines (one for each node) using a single server. The internal struc-
tures created by the framework in order to maintain the network physical and logical connectivity, in addition to the nodes
knowledge, were not designed to support networks of more than a few thousands of nodes. This makes it difficult to
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Table 7
A comparison of the number of update messages (|N| = 1000).

Update messages

Algorithm

Run 3.0 3.1 3.2 3.3 4.3.3 5.0

1 10,755 98,300 21,881 62,152 214,890 201,085
3 2215 2340 7620 60,448 141,792 126,007
5 2172 2340 4991 61,062 129,781 144,702
7 2612 2340 4929 45,690 128,532 119,548
10 3789 2340 4046 18,345 127,907 114,369

Fig. 14. A comparison of the number of update messages (|N| = 1000).

evaluate scalability in a realistic way. In order to partially assess scalability, we have focused on evaluating whether Algorithm
4.3.3 (the most promising algorithm based on the reported evaluations) maintains its performance trends (in terms of number of
hops, clustering coefficient, number of sent messages, and number of update messages) when the network’s size grows.

The larger scale simulation was carried out using a physical network of 5000 nodes where the number of queries issued at each
run was set to 750 and the maximum number of hops allowed for each query was set to 15. The results of these simulations are
shown in Table 8. These results indicate that the connectivity and communication patterns observed for the analyzed metrics in a
network of 1000 nodes are maintained when the number of nodes is increased to 5000.

5.4. Degree distribution and K-core decomposition

The degree of a node is the number of nodes adjacent to it. The analysis of the degree distribution may reveal interesting fea-
tures, such as the existence of hubs (i.e., nodes with high degree) or the scale-free nature of the network (i.e., networks that exhibit
a power-law degree distribution.).

Fig. 15 shows the degree distributions (on a log-log scale) for the physical network and the logical networks resulting
from the first and tenth run of Algorithm 4.3.3. The analysis of the degree distribution in the logical networks reveals the

Table 8
Performance analysis of Algorithm 4.3.3 (N = 5000 nodes).

Run Number of Hops Clustering Coefficient Answered queries Sent messages Update messages

1 10 0.0913 53 9,806,320 1,052,825
3 2 0.2410 234 7,257,560 709,777
5 1 0.2664 401 6,925,420 649,921
7 1 0.2755 538 6,825,532 648,989
10 1 0.2810 567 6,196,961 635,841
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Fig. 15. Node degree distribution for the physical and the logical networks resulting from the first and tenth runs (|N| = 5000).

preferential attachment feature (Barabási & Albert, 1999), which means that nodes preferentially connect to the nodes with higher
degrees. This gives rise to the formation of hubs. Although we can recognize a power-law distribution for the first run, the more
evolved network tends to move away from this kind of power-law distribution as more and more nodes tend to reach high con-
nectivity. This is most likely implied by the limited size of the network.

To further investigate the connectivity patterns of the evolved logical networks, we analyzed their k-core decomposition
(Seidman, 1983). H k is a k-core of a graph G if the degree of all nodes in H k is greater than or equal to k and H k is the
maximum subgraph of G with this property. The k-core decomposition of a network allows to measure the network cohe-
siveness. If the network is cohesive, it should be possible to remove some of its members without fragmenting the sub-
set. This also implies that messages can reach their destinations by many alternate (and independent) paths. The LaNetvi
tool was used to obtain and visualize the k-core decomposition of the logical network resulting from executing Algorithm
4.3.3 on a network of 5000 nodes. Fig. 16 shows the logical networks obtained in the first and tenth run. In these figures,
the size of a node represents its degree (left legend) and colors represent cores (right legend). Higher-numbered cores are
the more internal components of the networks. Both of these visualizations reveal highly hierarchical structures and high

Fig. 16. Visualization of the k-core decomposition for the logical networks obtained in the first run (top) and tenth run (bottom) of Algorithm 4.3.3 (N = 5000).
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Fig. 17. Logical network obtained with Algorithm 1.0 (run = 10, |N|=1000).

Fig. 18. Logical network obtained with Algorithm 4.3.3 (run = 3, |N|=1000).

Fig. 19. Logical network obtained with Algorithm 4.3.3 (run = 7, |N|=1000).



UN
CO

RR
EC

TE
D

PR
OO

F

16 Information Processing and Management xxx (2016) xxx-xxx

cohesiveness, which are key properties for allowing a fault-tolerant behavior. However, the cores obtained during the tenth run
have the property of being more densely connected than those obtained during the first run, which implies that the logical network
presents more robust routing capabilities as it evolves.

5.5. Semantic community structure of the evolved logical networks

It is useful to analyze the graphical representation of the logical network as it allows to determine whether semantic commu-
nities have emerged from the nodes’ interactions. Fig. 17 shows a logical network obtained with a network of 1000 nodes after
running Algorithm 1.0. In this case the nodes only know their physical neighbors, disregarding the topics of interest associated
with the rest of the pairs. As a consequence, this network does not reflect the existence of semantic communities. On the contrary,
the logical networks presented in Figs. 18 and 19, resulting from the third and seventh run of Algorithm 4.3.3, clearly indicate a
natural division of the network into groups of related nodes. While a high clustering coefficient is an indication of high intercon-
nectivity among the neighbors of nodes in a network, the visualizations presented here allow to recognize that these connections
give rise to semantic communities. Colors are related to the topic in which each node is interested and allow to appreciate the
grouping of nodes by similar topics. For instance, blue is associated with biological sciences while light blue is associated with
health sciences, which is semantically similar to biological sciences. It may be the case that in the physical network a pair of nodes
is far apart but the same pair is adjacent in the logical network. This is because the logical network reflects the semantic aspects
of the nodes.

6. Conclusions and future work

The driving hypothesis for this work was that better communication patterns can emerge by learning about other peers’ in-
terests in a P2P network. Based on this assumption, we have proposed a family of algorithms that adopt different strategies for
learning about other peers.

The results obtained by evaluating our algorithms through extensive simulations at different scales confirmed our hypothesis
and indicate that the algorithms with better behavior are those that induce greater collaboration among peers (that is, when a node
learns information about other peers, it should spread this knowledge across its community). Algorithms 4.3.3 and 5.0 make it
possible for nodes to share knowledge with the community. For these algorithms we can see that although the number of initial
messages sent is high, the number quickly decreases as the knowledge increases, requiring fewer hops to reach an answer. Fur-
thermore, these algorithms give rise to logical networks with semantic community structure (as indicated by the high clustering
coefficient and networks’ visualizations) and a small diameter (represented by the average hop count), revealing the formation of
a logical network with a small-world topology.

Learning not only takes place when a node answers a query, but also when the node that generated the query is found to be
semantically similar to the answering node. In this case, learning occurs independently of whether the node replies or does not
reply the query. Another important result obtained from the simulations is that the proposed algorithms produce a similar impact
on the logical network independently of whether the network is composed of 1000 or 5000 nodes, suggesting that the algorithms
scale well to larger networks.

Part of our future work will focus on performing search based on semantic criteria, going beyond the currently implemented
syntactic search mechanisms. For example, if a query contains the term “computer”, then articles referring to PCs or to notebooks
will be returned. Searching by semantic similarity occasionally results in a slight loss of precision but usually increases recall.
Moreover, ambiguities could be reduced by filtering results based on the user’s context. Further strategies aimed at improving
performance will be implemented and tested. For instance, better precision and recall could be achieved by incrementally learning
good topic descriptors and discriminators, in the way proposed in Lorenzetti and Maguitman (2009).

A limitation that we have observed is what we could describe as the “Closed Communities Problem”. In this setting, one or
more nodes can be separated from their community or can form another community with the same topic without knowing of
each other. To solve this problem we plan to implement a curiosity mechanism that will prompt some participants to explore the
network beyond their interests. Finally, we plan to run these algorithms in a more realistic distributed environment where the
participants could occasionally change their interests and generate queries dynamically. Research in this direction is currently un-
derway.

Acknowledgment

This work was supported by CONICET (PIP 11220120100487), MinCyT (PICT 2014-0624), and Universidad Nacional del
Sur (PGI-UNS 24/N039).

References

Akavipat, R., Wu, L.-S., Menczer, F., Maguitman, A.G., 2006. Emerging semantic communities in peer web search. Proceedings of the international workshop
on information retrieval in peer-to-peer networks. P2PIR ’06, ACM, New York, NY, USA, 1–8. http://dx.doi.org/10.1145/1183579.1183581.



UN
CO

RR
EC

TE
D

PR
OO

F

Information Processing and Management xxx (2016) xxx-xxx 17

Arour, K., Yeferny, T., 2014. Learning model for efficient query routing in P2P information retrieval systems. Peer-to-Peer Networking and Applications 1–17.
http://dx.doi.org/10.1007/s12083-014-0282-2.

Balakrishnan, H., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I., 2003. Looking up data in P2P systems. Communications of the ACM 46, 43–48. http://dx.
doi.org/10.1145/606272.606299.

Barabási, A.-L., Albert, R., 1999. Emergence of scaling in random networks. Science 286 (5439), 509–512. http://dx.doi.org/10.1126/science.286.5439.509.
Barbosa, M.W., Costa, M.M., Almeida, J.M., Almeida, V.A.F., 2004. Using locality of reference to improve performance of peer-to-peer applications. SIGSOFT

Software Engineering Notes 29 (1), 216–227. http://dx.doi.org/10.1145/974043.974079.
Bawa, M., Bayardo Jr., R.J., Rajagopalan, S., Shekita, E.J., 2003. Make it fresh, make it quick – searching a network of personal webservers. Proceedings of the

12th international world wide web conference. WWW ’03, ACM, New York, NY, USA, 577–586. http://dx.doi.org/10.1145/775152.775234.
Broder, A., Mitzenmacher, M., 2004. Network applications of bloom filters: A survey. Internet mathematics 1 (4), 485–509. http://dx.doi.org/10.1080/15427951.

2004.10129096.
Burt, R.S., 1992. Structural holes: The social structure of competition. Harvard University Press.
Carlsson, B., Gustavsson, R., 2001. The rise and fall of napster - an evolutionary approach. Proceedings of the 6th international computer science conference on

active media technology. AMT ’01, Springer-Verlag, London, UK, UK, 347–354. http://dx.doi.org/10.1007/3-540-45336-9_40.
Chen, H., Gong, Z., Huang, Z., 2005. Self-learning routing in unstructured p2p network. International Journal of Information Technology 11 (12), 59–67.
Crespo, A., Garcia-Molina, H., 2002. Routing indices for peer-to-peer systems. Proceedings of the 22nd international conference on distributed computing sys-

tems (icdcs’02). IEEE Computer Society, 23–32. http://dx.doi.org/10.1109/ICDCS.2002.1022239.
Doulamis, N.D., Karamolegkos, P.N., Doulamis, A., Nikolakopoulos, I., 2009. Exploiting semantic proximities for content search over p2p networks. Computer

Communications 32, 814–827. http://dx.doi.org/10.1016/j.comcom.2008.12.005.
Du, N., Wang, B., Wu, B., 2008. Community detection in complex networks. Journal of Computer Science and Technology 23, 672–683. http://dx.doi.org/10.

1007/s11390-008-9163-6.
Eftychiou, A., Vrusias, B., Antonopoulos, N., 2012. A dynamically semantic platform for efficient information retrieval in P2P networks. International Journal of

Grid and Utility Computing 3, 271–283. http://dx.doi.org/10.1504/IJGUC.2012.051424.
Erdős, P., Rényi, A., 1959. On random graphs. Publicationes Mathematicae Debrecen 6, 290–297.
Everett, M., Borgatti, S.P., 2005. Ego network betweenness. Social Networks 27 (1), 31–38. http://dx.doi.org/10.1016/j.socnet.2004.11.007.
Gómez Santillán, C., Cruz Reyes, L., Meza Conde, E., Schaeffer, E., Castilla Valdez, G., 2010. A self-adaptive ant colony system for semantic query routing

problem in P2P networks. Computación y Sistemas (CyS) 13 (4), 433–448.
Guo, L., Jiang, S., Xiao, L., Zhang, X., 2004. Exploiting content localities for efficient search in P2P systems. In: Guerraoui, R. (Ed.), Distributed computing.

Lecture Notes in Computer Science, 3274. Springer Berlin Heidelberg, pp. 349–364. http://dx.doi.org/10.1007/978-3-540-30186-8_25.
Ismail, A., Quafafou, M., Nachouki, G., Hajjar, M., 2010. A global knowledge for information retrieval in P2P networks. Internet and web applications and ser-

vices (iciw), 2010 fifth international conference on. 229–234. http://dx.doi.org/10.1109/ICIW.2010.41.
Jin, X., Chan, S.-H.G., 2010. Unstructured peer-to-peer network architectures. In: Shen, X., Yu, H., Buford, J., Akon, M. (Eds.), Handbook of Peer-to-Peer Net-

working. Springer, pp. 117–142). http://dx.doi.org/10.1007/978-0-387-09751-0_5.
Joseph, S., 2002. Neurogrid: Semantically routing queries in peer-to-peer networks. In: Gregori, E., Cherkasova, L., Cugola, G., Panzieri, F., Picco, G. (Eds.),

Web engineering and peer-to-peer computing. Lecture Notes in Computer Science, 2376. Springer Berlin Heidelberg, pp. 202–214. http://dx.doi.org/10.1007/
3-540-45745-3_18.

Kalnis, P., Ng, W.S., Ooi, B.C., Tan, K.-L., 2006. Answering similarity queries in peer-to-peer networks. Information Systems 31 (1), 57–72. http://dx.doi.org/
10.1016/j.is.2004.09.003.

Korzun, D., Gurtov, A., 2013. Structured peer-to-Peer systems: Fundamentals of hierarchical organization, routing, scaling, and security. Springerhttp://dx.doi.
org/10.1007/978-1-4614-5483-0.

Li, J., Loo, B.T., Hellerstein, J.M., Kaashoek, M.F., Karger, D.R., Morris, R., 2003. On the feasibility of peer-to-peer web indexing and search. In: Kaashoek,
M.F., Stoica, I. (Eds.), Proceedings of the 2nd international workshop on peer-to-peer systems (iptps ’03). LNCS, 2735. Springer-Verlag, pp. 207–215. http:
//dx.doi.org/10.1007/978-3-540-45172-3_19.

Lorenzetti, C.M., Maguitman, A.G., 2009. A semi-supervised incremental algorithm to automatically formulate topical queries. Information Sciences 179 (12),
1881–1892. Including Special Issue on Web Search doi:10.1016/j.ins.2009.01.029.

Meng, F., Ding, L., Peng, S., Yue, G., 2013. A p2p network model based on hierarchical interest clustering algorithm. Journal of Software 8 (5), 1262–1267. http:
//dx.doi.org/10.4304/jsw.8.5.1262-1267.

Merabti, M., Liu, Z., Yu, H., Kundur, D., 2010. Advances in peer-to-peer content search. Journal of Signal Processing Systems 59, 309–318. http://dx.doi.org/10.
1007/s11265-009-0343-6.

Nicolini, A.L., Lorenzetti, C.M., Maguitman, A.G., Chesñevar, C.I., 2013. Intelligent Algorithms for Reducing Query Propagation in Thematic P2P Search.
Anales del XIX Congreso Argentino de Ciencias de la Computación (CACIC). 71–79. Mar del Plata, Buenos Aires, Argentina.

Pongor, G., 1993. Omnet: Objective modular network testbed. Proceedings of the international workshop on modeling, analysis, and simulation on computer and
telecommunication systems. MASCOTS ’93, Society for Computer Simulation International, San Diego, CA, USA, 323–326. URL http://dl.acm.org/citation.
cfm?id=646600.698549.

Qin, C., Yang, Z., Liu, H., 2014. User interest modeling for p2p document sharing systems based on k-medoids clustering algorithm. Seventh international joint
conference on computational sciences and optimization (CSO). IEEE, 576–578. http://dx.doi.org/10.1109/CSO.2014.113.

Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D., 2004. Defining and identifying communities in networks. Proceedings of the National Academy
of Sciences of the United States of America 101 (9), 2658–2663. http://dx.doi.org/10.1073/pnas.0400054101.

Ripeanu, M., 2001. Peer-to-peer architecture case study: Gnutella network. Proceedings of the first international conference on peer-to-peer computing. 99–100.
http://dx.doi.org/10.1109/P2P.2001.990433.

Rosenfeld, A., Goldman, C.V., Kaminka, G.A., Kraus, S., 2009. Phirst: A distributed architecture for p2p information retrieval. Information Systems 34 (2),
290–303. http://dx.doi.org/10.1016/j.is.2008.08.002.

Seidman, S.B., 1983. Network structure and minimum degree. Social Networks 5 (3), 269–287. http://dx.doi.org/10.1016/0378-8733(83)90028-X.
Sharan, A., 2006. Exploiting semantic locality to improve peer-to-peer search mechanisms. Ph.D. thesis. Rochester Institute of Technology.
Shen, X.-J., Chang, Q., Gou, J.-P., Mao, Q.-R., Zha, Z.-J., Lu, K., 2016. Collaborative Q-Learning Based Routing Control in Unstructured P2P Networks. Multi-

media modeling. Springer, 910–921. http://dx.doi.org/10.1007/978-3-319-27671-7_76.
Sripanidkulchai, K., Maggs, B., Zhang, H., 2003. Efficient content location using interest-based locality in peer-to-peer systems. Proceedings of the twenty-sec-

ond annual joint conference of the ieee computer and communications. 3. IEEE, 2166–2176. http://dx.doi.org/10.1109/INFCOM.2003.1209237.
Steyvers, M., Tenenbaum, J.B., 2005. The large-scale structure of semantic networks: statistical analyses and a model of semantic growth. Cognitive sci-

ence 29 (1), 41–78.
Sujeeth, T., Kumar Kond Reddy, M., Kumar Reddy D., K., 2013. A selective neighbor search algorithm in unstructured peer-to-peer networks. International Jour-

nal of Latest Trends in Engineering and Technology 2 (4), 408–411. URL http://ijltet.org/wp-content/uploads/2013/07/60.pdf.



UN
CO

RR
EC

TE
D

PR
OO

F

18 Information Processing and Management xxx (2016) xxx-xxx

Tang, C., Xu, Z., Dwarkadas, S., 2003. Peer-to-peer information retrieval using self-organizing semantic overlay networks. Proceedings of the 2003 conference
on applications, technologies, architectures, and protocols for computer communications. SIGCOMM ’03, ACM, New York, NY, USA, 175–186. http://dx.
doi.org/10.1145/863955.863976.

Tigelaar, A.S., Hiemstra, D., Trieschnigg, D., 2012. Peer-to-peer information retrieval: an overview. ACM Transactions on Information Systems (TOIS) 30 (2),
9:1–9:34. http://dx.doi.org/10.1145/2180868.2180871.

Tirado, J.M., Higuero, D., Isaila, F., Carretero, J., Iamnitchi, A., 2010. Affinity P2P: A self-organizing content-based locality-aware collaborative peer-to-peer
network. Computer Networks 54 (12), 2056–2070. http://dx.doi.org/10.1016/j.comnet.2010.04.016.

Varga, A., Hornig, R., 2008. An overview of the omnet++ simulation environment. 1st international conference on simulation tools and techniques for commu-
nications, networks and systems & workshops. Simutools ’08, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineer-
ing), Brussels, Belgium, 60:1–60:10. URL http://dl.acm.org/citation.cfm?id=1416222.1416290.

Voulgaris, S., Kermarrec, A., Massouli, L., van Oteen, M., 2004. Exploiting semantic proximity in peer-to-peer content searching. Proceedings of the 10th IEEE
international workshop on future trends of distributed computing systems. IEEE Computer Society, Washington, DC, USA, 238–243. http://dx.doi.org/10.
1109/FTDCS.2004.1316622.

Wang, L., 2011. Sofa: An expert-driven, self-organization peer-to-peer semantic communities for network resource management. Expert Systems with Applica-
tions 38, 94–105. http://dx.doi.org/10.1016/j.eswa.2010.06.020.

Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of ‘small-world’ networks. Nature 393 (6684), 440–442. http://dx.doi.org/10.1038/30918.
Wu, K., Wu, C., 2013. State-based search strategy in unstructured p2p. Future Generation Computer Systems 29 (1), 381–386. http://dx.doi.org/10.1016/j.future.

2011.08.002.
Yan, F., Zhan, S., 2004. A peer-to-peer approach with semantic locality to service discovery. In: Jin, H., Pan, Y., Xiao, N., Sun, J. (Eds.), Grid and cooperative

computing - gcc 2004. Lecture Notes in Computer Science, 3251. Springer Berlin Heidelberg, pp. 831–834. http://dx.doi.org/10.1007/978-3-540-30208-7_
116.

Yeferny, T., Arour, K., 2010. LearningPeerSelection: A query routing approach for information retrieval in P2P systems. Internet and web applications and ser-
vices (ICIW), 2010 fifth international conference on. 235–241. http://dx.doi.org/10.1109/ICIW.2010.42.

Yu, Y.-T., Gerla, M., Sanadidi, M., 2015. Scalable vanet content routing using hierarchical bloom filters. Wireless Communications and Mobile Comput-
ing 15 (6), 1001–1014. http://dx.doi.org/10.1002/wcm.2495.

Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D., 2004. Information retrieval techniques for peer-to-peer networks. Computing in Science Engineering 6 (4),
20–26. http://dx.doi.org/10.1109/MCSE.2004.12.

Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D., 2005. Exploiting locality for scalable information retrieval in peer-to-peer networks. Information Sys-
tems 30 (4), 277–298. http://dx.doi.org/10.1016/j.is.2004.03.001.

Zhu, T., Wu, B., Wang, B., 2009. Social influence and role analysis based on community structure in social network. Proceedings of the 5th international confer-
ence on advanced data mining and applications. ADMA ’09, Springer-Verlag, Berlin, Heidelberg, 788–795. http://dx.doi.org/10.1007/978-3-642-03348-3_
84.


