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Abstract

Recommender systems have become prevalent in recent years as they help users
to access relevant items from the vast universe of possibilities available these
days. Most existing research in this area is based purely on quantitative as-
pects such as indices of popularity or measures of similarity between items or
users. This work introduces a novel perspective on movie recommendation that
combines a basic quantitative method with a qualitative approach, resulting
in a family of mixed character recommender systems. The proposed framework
incorporates the use of arguments in favor or against recommendations to deter-
mine if a suggestion should be presented or not to a user. In order to accomplish
this, Defeasible Logic Programming (DeLP) is adopted as the underlying formal-
ism to model facts and rules about the recommendation domain and to compute
the argumentation process. This approach has a number features that could be
proven useful in recommendation settings. In particular, recommendations can
account for several different aspects (e.g., the cast, the genre or the rating of
a movie), considering them all together through a dialectical analysis. More-
over, the approach can stem for both content-based or collaborative filtering
techniques, or mix them in any arbitrary way. Most importantly, explanations
supporting each recommendation can be provided in a way that can be easily
understood by the user, by means of the computed arguments. In this work the
proposed approach is evaluated obtaining very positive results. This suggests a
great opportunity to exploit the benefits of transparent explanations and justi-
fications in recommendations, sometimes unrealized by quantitative methods.
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1. Introduction

Recommendation systems are support mechanisms that assist users in their
decision-making process while interacting with large or complex information
spaces. Most recommender systems are aimed at helping users to deal with
the problem of information overload by facilitating access to relevant items [32].
Recommenders attempt to generate a model of the user or user’s task and ap-
ply diverse heuristics to anticipate what information may be useful. In order
to come up with recommendations, conventional recommender systems rely on
popularity indices or on similarity measures between users or contents, com-
puted on the basis of methods coming from the social science, the information
retrieval or the machine learning communities.

The human-machine interaction observed in existing recommender methods
is particularly rigid. Such services do not provide mechanisms for easily re-
formulating the criteria under which a recommendation will be based. This
means that once a particular recommendation technique is adopted and a set
of parameters’ values are assigned (which are typically established by the rec-
ommendation system’s configuration), the user does not have the possibility of
naturally introducing new preferences for the system to consider or of indicat-
ing how to combine various facts and rules for generating recommendations.
Decisions about user preferences are mostly based on heuristics, which rely on
ranking previous user choices or gathering information from other users with
similar interests. In other words, existing recommender systems do not provide
an interaction mechanism to deal in a natural and methodical way with users’
preferences in complex environments.

Another central weakness in most current methods of recommendation is
the lack of transparency. Most on-line recommender systems act like black
boxes, not offering the user any insight into the system logic or justification for
the recommendations. This is due to the fact that the quantitative methods
adopted by most existing recommender systems do not have a clean underlying
model that is easily understandable in a final user level. This makes it hard
to provide users with a clear explanation of the factors and procedures that
led the system to come up with certain recommendations. As has been shown
by previous studies (e.g., [43, 45]) users prefer recommendations if they can
understand the reasons why these recommendations are presented. Certainly, a
recommendation is more compelling if the user is aware of and agrees with the
reasons supporting why the recommendation was presented than if it emerges
from a black box. In addition, by offering a justification a system is providing
additional useful information to its users about related topics or items that they
may be unaware of.

Another problem faced by recommender systems is that users’ preference cri-
teria generally involve incomplete and potentially inconsistent knowledge about
the domain. This is due to the fact that users preferences are dynamic and typ-
ically change as time evolves or as new material becomes available for analysis.
Because the quantitative approaches adopted by most recommender systems
are not equipped with a mechanism to revise previous conclusions, the changing



nature of users preferences is poorly dealt with. Adopting a more qualitative
approach by augmenting recommendation with classical logic inference will not
solve the above mentioned issues, as it will often lead to contradictory conclu-
sions, which are problematic unless treated appropriately.

In light of these problems, we propose to model users’ preference criteria
using DeLP [16], a framework for defeasible argumentation [38, 42] based on
logic programming that can effectively deal with incomplete and contradictory
information. The use of DeLLP allows to integrate dialectical reasoning into the
recommendation process, which provides a reasoned basis for the items sug-
gested to the user. In addition to offering a natural means to codify data about
the recommendation domain, DeLP can deal effectively with the defeasible na-
ture of reasoning patterns that typically arise in recommendation. Finally, an
interesting feature of DeLLP, that certainly is proven handy in recommendation
settings, is that conclusions obtained through this formalism can be easily ex-
plained by the argumentative reasoning process. We will circle back to this
feature of DeLP latter to show how it can be exploited to obtain natural lan-
guage explanations of the reasons behind recommendations.

Despite its importance, the use of argumentation-enabled mechanisms in rec-
ommendation settings has not received much attention from the recommender
systems’ community. Nevertheless, in the last decade several advances in the
area have been made, mostly from the theoretical point of view. The prob-
lem of empowering recommendation with argumentation has been previously
addressed in [11]. In that work the focus is set on a general characterization
of argument-based recommender systems, described as user support tools where
recommendations are based on arguments. That work presents a first general
approach towards the use of DeLP as the basis of recommender systems. In
particular, the system introduced in the present work can be seen as a partic-
ular instance of that general approach. An argument-based recommendation
system for the music domain was introduced in [6], where a complete frame-
work for achieving recommendations based on defeasible reasoning is presented.
A particularly interesting feature of that framework is its use a two-fold argu-
ment preference criterion, which enables to easily adjust the behavior of the
systems towards different aspects. Nevertheless, the paper only introduces the
theoretical aspects of the proposed recommender system, without evaluating
its performance. Moreover, although the use of argument-based explanations is
mentioned as an advantage of the proposed recommender, there is no complete
description of how these explanations can be provided. Finally, further theoreti-
cal analyses and simulations aimed at combining quantitative and qualitative as-
pects to generate argument-based news recommendations were presented in [5].
In that work, both a theoretical investigation and simulations are presented,
but there is no empirical analysis of the proposed system performance.

The work presented here can be seen as a confluence and continuation of the
above-mentioned works, drawing some key points from them but also present-
ing new contributions. In particular, we extend previous results by describing a
novel framework for the specific domain of movie recommendation. Therefore,
we contribute to the research field of recommender systems in different ways.



First of all, we propose a complete set of postulates accounting for both quan-
titative and qualitative aspects of the movie domain and describe how these
postulates can be implemented by means of DelLPrules. Then, we present a
careful investigation of the benefits of incorporating defeasible argumentation
into the recommendation process. Also, an important difference between our
work and the previous work in argument-based recommenders is that our pro-
posal is empirically evaluated using real-world datasets. In order to complete
our evaluations, we use an augmented version of the MovieLens dataset [21] and
compute classical evaluation metrics to assess the effectiveness of the proposal.
Moreover, the family of recommenders presented in this work are the first DeLLP-
powered real-world systems using a very large scale (10M) dataset, thus setting
a precedence on the applicability of massive argument-based applications. Fi-
nally, in this work we describe how to obtain complete explanations on the
reasons behind recommendations, exploiting the coherent internal structure of
arguments to generate a final explanation that is presented to the users as a nat-
ural language sentence. Such sentences can account for any type of explanation
(i.e., content-based, collaborative-based or preference-based explanations[45])
providing that they can be modeled by rules. To sum up, the main contribu-
tions of this work are the following:

e A novel, mixed approach to movie recommendation is presented. The pro-
posed approach considers quantitative and qualitative aspects of the rec-
ommendation domain. These aspects are shown to be fully implementable
in DeLP, and the benefits of the approach (e.g., easily shifting from one
aspect to the other) are discussed.

e An analysis is performed to study how different sets of postulates can be
integrated to develop a family of recommenders with different predictive
capabilities.

e It is shown how by changing a single feature of the framework (the argu-
ment preference criteria) we can go from content-based recommenders to
collaborative filtering ones and the other way around, or even mix them
in any way we prefer to develop hybrid recommenders.

e Some examples are provided on how recommendations are generated and
how explanations can be built based on arguments.

e The proposal is evaluated using an augmented version of the MovieLens
dataset [21].

2. Background

2.1. Recommender Systems

Recommender systems are tools that assist users by facilitating access to
relevant items, such as music, books, or movies, or to social elements, such
as people or groups. These systems adopt mainly two different views to help



predict information needs. The first approach is known as “user modeling” and
relies on the use of a profile or model of the users, which can be created by
observing users’ behavior (e.g., [31]). The second approach is based on “task
modeling”, where recommendations are based on the context in which the user
is immersed (e.g.,[9]). The context may consist of an electronic document the
user is editing, web pages the user has recently visited, etc.

Two main techniques have been used to compute recommendations: content-
based and collaborative filtering. Content-based recommenders [3, 37], are
driven by the premise that user’s preferences tend to persist through time.
These recommenders frequently use machine-learning techniques to generate
a profile of the active user, typically stored as a list of rated items. In order to
determine if a new item is a potentially good recommendation, content-based
recommender systems rely on similarity measures between the new items and
the rated items stored as part of the user model. Recommender systems based
on collaborative filtering [17, 2, 41, 40] rely on the assumption that users’ prefer-
ences are correlated. These systems maintain a pool of users’ profiles associated
with items that the users rated in the past. For a given active user, collaborative
recommender systems find other similar users whose ratings strongly correlate
with the current user. New items not rated by the active user can be presented
as suggestions if similar users have rated them highly.

A combination of collaborative-filtering and content-based recommendation
gives rise to hybrid recommender systems [36, 12, 10, 34]. Hybrid recommenders
typically generate a model of the active user by monitoring the user behavior
or by analyzing user’s declared interests or feedback. The generated user model
is usually combined with the user information needs in order to seek for sug-
gestions. In addition, the system maintains a pool of profiles from other users,
making possible the application of collaborative filtering to further refine the
selected set of recommendations.

Additional dimensions of analysis for recommender systems are the content
of the suggestion (e.g., news, URLSs, people, articles, text, products), the purpose
of the suggestion (e.g., sales or information), the event that triggers the search
for suggestions (by user’s demand or proactively), and the level of intrusiveness
(none, low, moderate or high).

Research in recommender systems has significantly grown in the last years
fueled mainly by the proliferation of social networks. For an up to date review
of recommendation systems we refer the reader to [4].

2.2. Defeasible Logic Programming

In our work, we will use the formalism of Defeasible Logic Programming
(DeLP) [16] as the key to integrate argumentation into recommender systems.
The language of DeLP is based on the language of logic programming, where
standard logic programming concepts (such as signature, variables, functions,
etc.) are defined in the usual way. Literals are atoms that may be preceded
by the symbol “~” denoting strict negation, as in extended logic programming.
Facts are simply literals. Strict rules are ordered pairs Ly <— L1, ..., L, whose
first component, Lg, is a literal, and whose second component, L1,..., Ly, is



a finite non-empty set of literals. Similarly, defeasible rules are ordered pairs
Ly — L4,...,L, whose first component, Lg, is a literal, and whose second
component, Lj,..., Ly, is a finite non-empty set of literals. Note that strict
rules are used to represent incontrovertible information, whereas defeasible rules
are used to represent defeasible knowledge (i.e., tentative information that can
be used as long as nothing is posed against it).

In this formalism, the state of the world is modeled as a Defeasible Logic
Program, essentially a set of facts, strict rules and defeasible rules. In a given
defeasible logic program P, the subset of facts and strict rules is referred to as
II, and the subset of defeasible rules as A, thus a DeLP program P can also be
noted as (I, A). Since the set II represents non-defeasible information it must
be non-contradictory.

In what follows, we adopt the usual conventions to specify the rules used by
our recommenders in the DelLP language. Variable names begin with uppercase
letters, while constant and predicate names begin with lowercase letters. For in-
stance, good_rating(Movie) <— rating-movie(Movie) > 3 represents a strict rule
in this notation (where the constant 3 is a quality bound that represents the
low limit value to determine a good quality movie). On the other hand, recom-
mend(Movie, User) — good_rating(Movie), famous(Actors) is an example of a
defeasible rule.

Given a DeLP program P, a query posed to P is a ground literal @Q which
must be supported by an argument. Hence, to determine whether a movie should
be recommended to a certain user or not, our system must compute arguments
based on the rules in the DeLLP program. Arguments are built on the basis
of a defeasible derivation computed by backward chaining applying the usual
SLD-inference procedure used in logic programming [25].

Definition 1. (Argument structure)[16] Let h be a literal, and P = (II, A) be a
DeLP program. We say that (A, h) is an argument structure for h, if and only
if, A is a set of defeasible rules from P (i.e., A C A), such that: (1) there exists
a defeasible derivation for h from IIU A, (2) the set IIU A is non-contradictory,
and (3) A is minimal with respect to set inclusion (i.e., no A’ C A satisfies the
previous conditions).

Arguments can attack each other. An argument (A;, h1) attacks (A, ho) at
h if and only if there exists a sub-argument structure (A4, h) from (A, ho) such
that TTU{h, h1} is contradictory. Defeat among arguments is defined combining
the attack relation and a preference criterion “<”. An argument (A1, h1) defeats
(Ag, ho) if (Aq, hy) attacks (Ag, ho) at a literal h and (Aq, h1) < (A, h) (proper
defeater) or (Aj, h1) is unrelated to (A4, h) (blocking defeater).

In order to decide if a partial attack succeeds a comparison criterion must be
used, establishing the relative strength of the arguments involved in the attack.
This criterion will then solve conflicting situations between arguments. In our
recommender system we have chosen to use a particular instantiation of the
DeLP preference criteria that combines the following elements:



e Priorities Among Rules: a predefined preference order among rules is used
to determine which argument prevails. To do this, a partial order relation
among rules must be defined. Then, when comparing two arguments, we
consider the two rules that have conflicting conclusions, and the winner
argument is the one that contains the rule that is preferred.

e Gleneralized Specificity [16, 44]: those arguments that are based on more
information or those that support their conclusions more directly are pre-
ferred.

Given these criteria, we must describe how they are combined to establish
which arguments prevail in an attack situation. Basically, we give the Priority
Among Rules criterion preponderance over Generalized Specificity. In a forth-
coming section we will show how this order between the two criteria will enable
us to establish a preference relation between different ingredients involved in a
recommendation.

Definition 2. (Defeat) Let P = (II, A) be a DeLP program. Let (A1, hy) and
(Ag, ha) be two arguments in P. We say that (Aa, he) defeats (A1, hy) if and
only if there exists a sub-argument (A, h) of (A1, h1) such that (As, ha) counter-
argues (A1, h1) at literal h and it holds that:

1. (Ag, ho) is preferred by priority to (A, h) (proper defeater), or

2. (A, h) is not preferred by priority to (A2, he) and (Asz, ha) is strictly more
specific that (A, h) (proper defeater), or

3. (A, ha) is unrelated to (A, h) (blocking defeater).

Example 1. Consider the following sets of rules:

A = { recommend(Movie, User) — good_rating(Movie),
~recommend(Movie, User) — likes_by_top_genre(Movie, User)}
IT = { likes_by_top_genre(matriz, henry), good_rating(matriz)}.

Suppose that we establish a priority among rules as follows:

~recommend(Movie, User) — ~likes_by_top_genre(Movie, User)
has higher priority than
recommend(Movie, User) — good_rating(Movie)

As stated before, this established priority can be used to solve clashes between
arguments by transferring such priority to the arguments. Then:

A = { ~recommend(matriz, henry) — ~likes_by_top_genre(matriz, henry)}
is preferred to
B = {recommend(matriz, henry) — good_rating(matriz)},

as the rule in the structure of argument A is preferred to the one in the structure
of argument B. Finally, the conclusion is not to recommend the movie “matriz”.



In DeLP a literal A will be warranted if there exists a prevailing argument
structure (A4, h). In order to establish whether (A, h) prevails, the set of defeaters
for A will be considered. Defeaters are arguments and may in turn be defeated.
Thus, a complete dialectical analysis is required to determine which arguments
are ultimately accepted. Such analysis results in a tree structure called dialec-
tical tree, in which arguments are nodes labeled as undefeated (U-nodes) or
defeated (D-nodes) according to a marking procedure.

Definition 3. (Dialectical tree) [16] The dialectical tree for an argument (A, h),
denoted Tia py, is recursively defined as follows: (1) A single node labeled with
an argument (A, h) with no defeaters (proper or blocking) is by itself the dialec-
tical tree for (A,h); (2) Let (A1, h1),(As, ha),...,(An, hy) be all the defeaters
(proper or blocking) for (A, h). The dialectical tree for (A, h), Tia ny, is obtained
by labeling the root node with (A, h), and making this node the parent of the root
nodes for the dialectical trees of (A1, h1), (A, ha), ..., (An, hy).

For the marking procedure we start by labeling the leaves as U-nodes. Then,
for any inner node (As, Q2), it will be marked as a U-node if and only if every
child of (As,@3) is marked as a D-node. If (A5, Qo) has at least one child
marked as a U-node then it is marked as a D-node. This marking allows us
to characterize the set of literals sanctioned by a given DeLLP program, called
warranted literals. A literal h is warranted if and only if there exists an argument
structure (A, h) for h, such that the root of its dialectical tree T 4 5 is marked
as a U-node. We will use T(tl,h) to refer to the marked dialectical tree 74 ).

Example 2. In Figure 1 we display the marking process for two dialectical trees.
In these examples we represent an argument through a triangle labeled with the
argument name and the claim that supports the argument. The arrows represent
an attack between arguments. The dialectical tree shown on the left-hand side
of the figure contains a non-defeated argument structure that supports the literal
h1. The opposite case is illustrated by the dialectical tree that appears on the
right-hand side of the figure.

! U-node 7% (Ay, hy)

D-node

D-node

( 1,01, (Bz,‘h

By @) )
U-node U-node U-node
(Ay,hy) (45 hs) Aghy

Dialectical tree (a)

Dialectical tree (b)

Figure 1: Dialectical tree examples.



In DeLP, in order to determine whether a particular literal is warranted, it is
necessary to perform a query on the ground literal that it will try to warrant. A
DeLLP-query @ is warranted from a DeLP-program P if there exists an argument
A supporting @) such that A is the root of a dialectical tree and the root is marked
as undefeated. The answer for a query @ from a DeLP-program P is either:
YES, if @ is warranted from P; NO, if the complement of ) is warranted from
P; UNDECIDED, if neither () nor its complement are warranted from P; or
UNKNOWN;, if @ is not in the language of the program P.

2.83. The DBI-DeLP framework: enabling database supported argumentation

In the previous sections we have described the DeLP formalism and we
have stated that it provides an appropriate means for dealing with several is-
sues that arise in the context of recommendation systems. However, to be
useful in real-world applications, massive data-driven systems cannot rely on
information manually added to a DeLP program. Therefore, the integration
of knowledge-based systems (such as recommenders) with large repositories is
widely acknowledged as a central issue in the development of real-world scale
systems [18, 27]. As an indication of this, consider the efforts made over the
years to connect artificial intelligence technologies with large repositories in the
form of databases by various approaches in areas such as data mining [15, 26],
machine learning [35], or deductive databases [46, 39].

Thus, in order to develop useful argument-based recommenders we have to
feed them with live, real-wold information about the recommendation domain
and about the users of the system. Instead of including such information di-
rectly into the program as facts, we will use relational databases to store this
information. In our proposal, the integration of DeLLP with a relational database
is enabled by the Database Integration for Defeasible Logic Programming (DBI-
DeLP) framework [13]. The rest of this section briefly introduces the DBI-DeL.P
framework.

Basically, a DBI-DeLLP program is a DeLLP program extended with informa-
tion obtained from databases. In characterizing the framework, it is necessary
to consider the possible presence of contradictory information tied to the use of
several databases. Given a database D;, it might be the case that tuples t; € D;
and to € D; reflect contradictory knowledge, what makes D; inconsistent, i.e.,
information in a dataset can give us reasons both in favor of the recommen-
dation of an item and against it at the same time. This is important for the
formalization of the framework underlying our recommenders, because it means
that such information cannot be included in the set II of the program, as it
may lead to inconsistency. To overcome this problem, we adopt the notion of
presumption [16, 33] for representing “defeasible” information, avoiding in that
manner inconsistencies not allowed in the strict knowledge available, as required
by DeLP. Thus, tuples in databases (in our setting, the information coming from
the dataset) are represented as a particular kind of presumptions called opera-
tive presumptions, which are literals in the form pred(q,. .., qm)— true .

We extend DeLP programs to include information as operative presumptions
obtained from databases. A DBI-DeLLP program accounts for a DeLLP program



as defined in Section 2.2 along with a set X of operative presumptions, associ-
ated with the records in the dataset used in a recommender. Such operative
presumptions are retrieved on demand by the recommender for solving a par-
ticular query associated with a recommendation and are then discarded after
the final answer is obtained. Formally:

Definition 4. (DBI-DeLP Program)

Let D = {Dq,...,Dy} be a set of databases, P = (II,A) a DeLP program, X
the set of all predicates in the rules of P. A DBI-DeLP program P’ is a triplet
(I, A,X) where ¥ = OPsetx p is the set of operative presumptions for (X,D).

In order to illustrate these concepts, consider an Argument-based Movie
Recommender System containing strict rules such as:

child_restricted(Movie) <— has_violence(Movie),
and defeasible rules such as
has_violence(Movie) — director(Movie, tarantino).
Dynamically, operative presumptions such as

film_genre(pirates_of_the_caribbean, comedy) — true, and

film_genre(pirates_of_the_caribbean, action) — true

could be added if different genres for the movie Pirates of the Caribbean are
found in a dataset when attempting to solve a query.

In a nutshell, to obtain relevant data for the argumentation process we use
the elements in the literal that the dialectical procedure is trying to warrant
to determine which records from the database are related to it, then we use
the pertinent SQL queries. Finally, we transform all the retrieved results into
operative presumptions in such a way that they become available to the argu-
mentation process. This dynamic search for relevant information is crucial if we
want to obtain relevant data (e.g., the movies a certain user has seen) from the
universe of available data in the dataset.

Due to space constrains, no further details of DBI-DeLP are presented here.
The interested reader is referred to [13] for a more complete description of the
framework.

Further in the paper we will show a complete example of how recommenda-
tions using real-world data stored in a relational database can be accomplished,
and how the information retrieval process of DBI-DeLP is a cornerstone of it.

3. An argument-based movie recommender

As it has been pointed out earlier [11], recommendation approaches based
on purely quantitative criteria often fail at giving users the reasons behind
recommendations, thus affecting the users’ trust in the results. In qualitative
approaches such as the one we propose in this paper, explanations naturally
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complement recommendations. Therefore, the user will receive both a recom-
mendation and a reason supporting it. This has a two-fold advantage: the user
will have more confidence on the presented result, and the user can give the
system explicit feedback that can help guide the recommendation process.

In the previous sections we have introduced the underlying theory for de-
veloping an argument-based recommender. In the present section we show how
both quantitative and qualitative criteria can be modeled using DeL.P rules to
implement a mixed-character recommendation system. This mixed approach to
recommendation allows to generate reasoned recommendations based on mas-
sive real-world datasets.

3.1. Dataset

The data we have used for our tests is based on a dataset from Grouplens [22],
known as the 10M MovieLens dataset. The selected dataset contains 10,000,054
ratings. The ratings are on a scale from 1 to 5 stars. The dataset also contains
95,580 tags assigned by 71,567 users to 10,681 movies of the online movie rec-
ommender service MovieLens [21]. To complete our tests, users were selected
at random. All the selected users had rated at least 20 movies. Unlike others
MovieLens datasets, no demographic information was available. Each user is
represented by an id, and no other information is provided.

Figure 2 illustrates the structure of the three files containing the data about
movies, ratings and tags.

1D Movie ID User ID
Title (Year) User ID Movie ID
Genre List Rating Tag
Timestamp Timestamp

Figure 2: Data files structure.

Among the datasets provided by GroupLens we selected the largest one with
the purpose of showing that DeLLP is capable of dealing with massive amounts of
data. Since we wanted to base our recommendations on certain attributes that
were not available in these datasets, we have augmented them by taking the
Internet Movie Database (IMDb) [24] as a source to add data such as directors,
lead actors, writers, etc. These additional attributes constituted an important
ingredient to study the impact of qualitative aspects on the recommender per-
formance. Figure 3 illustrates the resulting set of attributes used to characterize
a movie.

We have noticed that Grouplens has also developed a dataset with features
similar to ours [20]. However, the dataset we have created is more than ten
times larger than the one provided by Grouplens. The dataset used in this work
can be downloaded from http://ir.cs.uns.edu.ar/datasets.
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ID
Title
Year

Release Date
IMDB URL
Rated
Runtime
Rating
Rating Count IMDB
IMDB 1D
Actor List
Director List
Writer List

Genre List

Figure 3: Stored data for each movie.

8.2. Supporting recommendations: quantitative and qualitative aspects

The mechanism for generating recommendations in an argument-based rec-
ommender system is very different from the process adopted by most of the
existing recommenders. Nevertheless, they share the same spirit: they attempt
to establish the similarity between objects or users, and then they use this
similarity to make recommendations. The main difference is that while purely
quantitative approaches compute this similarity as a numerical measure, in the
argument-based approach proposed here the similarity is determined using rules
that state which characteristics have to be shared between objects or users to
be considered similar.

The proposed recommendation approach relies on a set of intuitive postulates
that we have developed to describe the conditions under which a movie should
be recommended to a given user. These postulates are presented in Table 1:

1.1 Auser may like a movie if the average movie’s rating is above the average general rating.

' 1.2 Auser may dislike a movie if the average movie’s rating is under the average general rating.
) 2.1 Auser may like a movie if the genre of the movie is one of the user’s favorite ones.
2.2 Auser may dislike a movie if it has one of the genres that are most disliked by the user.
s 3.1  Auser may like a movie if the actor of the movie is one of the user’s favorite ones.
3.2 Auser may dislike a movie if it has one of the actors that are most disliked by the user.
21 A user may like a movie if he likes another movie that has at least one actor in common and has
4 the same genre.
a% A user may dislike a movie if he dislikes another movie that has at least one actor in common and

has the same genre.
Table 1: Postulates.

These postulates can be easily translated into DeLLP rules. The applicability
of the rules will depend on the information in the dataset. For the sake of
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simplicity, from this point on we will consider that certain literals are built-in.
These literals are computed elsewhere, retrieving information from the dataset
(by means of the approach presented in Section 2.3) and using it to prove the
literals under analysis. For instance, the system uses the literal genre(Mouvie,
Genre) to retrieve information from the dataset about the genres of a certain
movie.

1.1 good_movie (Movie) — avg_rating(Movie) > 3.8.

! 1.2 ~good_movie (Movie) — avg_rating(Movie) < 3.8.
2.1 likes_by_genre (Movie, User) — top_genre(User, Genre), genre(Movie, Genre).
2 2.2 ~likes_by_genre (Movie, User) — bottom_genre(User, Genre), genre(Movie, Genre).
3.1 likes_by_actor (Movie, User) — top_actor(User, Actor), leads_in(Movie, Actor).
3 3.2 ~likes_by_actor (Movie, User) — bottom_actor(User, Actor), leads_in(Movie, Actor).
41 likes_by_actor_genre (Movie, User) — top_actor(User, Actor), Ieads_in(Moyie, Actor),
top_genre(User, Genre), genre(Movie, Genre).
4 42 likes_by_actor_genre (Movie, User) — bottom_actor(User, Actor), leads_in(Movie, Actor),

bottom_genre(User, Genre), genre(Movie, Genre).
Table 2: Postulates - DeLP Rules.

Notice that these postulates use auxiliary predicates to find out the fa-
vorite/most disliked actors and genres for a certain user. These predicates are
computed as follows:

e top_actor: we have two ways to determine the favorite actors. The first
one is to obtain the three actors that appear most frequently in the set of
movies watched by the user. An alternative way is to consider only those
movies that the user has rated with a four or greater value.

e bottom_actor: is obtained as the three actors that appear most frequently
in the set of movies that the user has rated with a two or lower value.

e top_genre: is defined as the three genres that appear most frequently in
the set of movies that the user has rated with a four or greater value.

e bottom_genre: is obtained as the three genres that appear most frequently
in the set of movies that the user has rated with a two or lower value.

Also, to use the postulates we need to encode an auxiliary set of rules in the
form recommend(Movie, User) — likes_by_postulate(Movie, User). So a partic-
ular instantiation of the rule will be, for example, recommend(Movie, User) —
likes_by_actor(Movie, User).

The value 3.8 used in some of the postulates is the result of averaging all
the ratings available in our dataset. Therefore, one of the proposed postulates
states that a movie is good if its average rating is above the average of all the
ratings at hand. On the other hand, a movie is not good if its average rating is
less than or equal to that value.
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The current system implementation is based on the set of postulates de-
scribed in Table 1, which as can be seen correspond to a content-based approach.
Nevertheless, this is a particular feature of this version of the recommender, and
does not represent a restriction of the underlying framework. We can easily ex-
pand the recommender by incorporating additional postulates accounting for
collaborative-filtering aspects. Table 3 describes a set of extra postulates ex-
ploiting the relation among similar users that could be used to extend the basic
postulates, in order to transform the current implementation into a hybrid one.

5 5.1 Auser may like a movie if the movie is liked by a similar user.
5.2 Auser may dislike a movie if the movie is disliked by a similar user.
6.1  Auser may like a movie if the movie is liked by a group of similar users.

6.2  Auser may dislike a movie if the movie is disliked by a group of similar users.

Table 3: Postulates - Extra.

8.8. Deciding what is important: relevant aspects in the final recommendation

Based on the given set of postulates it is possible to obtain arguments in
favor or against the potential recommendations. A problem arising from this
situation is how to decide whether to finally recommend a movie or not. We
have introduced an argument preference criterion which combines two different
criteria that will help to solve this problem. We will use the priority among rules
preference criterion to state which postulates prevail over others. This gives us
the opportunity to easily find the better combination of postulates by empirical
trials. So, we can go from a collaborative-filtering-based recommender which
refines its answers on content-based aspects to the other way around effortlessly.
We can even go a step further and mix aspects in any arbitrary way we want,
just by switching priorities between rules.

The second preference criterion, generalized specificity, is used just for the
sake of simplicity, as it will solve conflicts in those cases where we do not want
to establish explicit priorities. In particular, this is useful when a rule is used
to refine the conditions stated in another one. For example, according with this
criterion, given the rules recommend(Movie, User) —< likes_by_postulate(Movie,
User) and ~recommend(Movie, User) — likes_by_postulate(Movie, User), is_counter-
example(Movie, User), those arguments built with the second rule will be more
specific than those built with the first rule.

8.4. Ezpanding aspects: addition of rules

We have already shown how different aspects that can be taken into ac-
count for recommendations can be included in an argument-based recommender
system by modeling them through combinations of strict and defeasible rules.
Moreover, as we have mentioned earlier, using an argumentation approach to
recommendation like the one introduced before we can mix up the modeled as-
pect in virtually any way we want. This allows us to build mixed recommender
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systems, and to easily adjust them towards being more quantitative or quali-
tative oriented to better fit the constraints of the particular context in which
they will be used. Such characteristics can be certainly proved handy in the
development of recommender systems for several particular domains, making
our argumentation-based approach a viable option towards such developments.

Another important benefit of using rules to codify the recommendation cri-
teria is that rules represent the cases they model in a colloquial way that is easy
to understand and discuss by final users. This characteristic facilitates the in-
teraction between the user and the system; we think it is easier for the final user
to give feedback to the system based on natural language explanations to refine
rules than to propose the change or addition of a parameter in a mathematical
formula.

Finally, a useful characteristic of certain quantitative approaches is that
modifications can be made to them in order to refine previous recommendations.
This is something that also holds in our argumentation-based recommendation
scenario, as the colloquial way in which rules are represented leads to another
feature: new cases can be modeled by adding rules to the system at any time,
without affecting other rules in the system. That is, we can add rules to model
new recommendation aspects directly by encoding them as new strict or de-
feasible rules. These rules will be considered in subsequent recommendations,
possibly modifying the universe of recommended items for certain users.

In this way we can expand the set of postulates to change the criteria upon
which an argument-based recommender system generates its suggestions. We
argue that in any dynamic enough environment (as is typically the case in all
recommendation domains), evolving the way recommendations are made is not
only a benefit, but can also be crucial to the system’s success. Basically, there are
two situations when we may want to expand the aspects that the recommender
takes into account. On the one hand, we may want to add a rule that refines
an existing one. For instance, a refinement is worthwhile if we discover that a
certain rule works well in most cases but it has a number of counter-examples,
and we know the characteristics that those counter-examples share. On the
other hand, we can add an entirely new postulate modeling a relation between
data that we have not been taking into account, or if we suddenly had access
to data that was previously absent, as can be the case if a new dataset related
to our application domain is developed.

Regarding the first case, a noteworthy advantage of using these high level
rules to define recommendations is that they allow to include heterogeneous
contextual information, which is typically hard to model in other approaches.
Although some quantitative approaches have already addressed this issue [28],
the way contextual characteristics are modeled in these approaches (using cate-
gorical values) suggests that a qualitative approach may lead to a more natural
way to deal with these characteristics in the recommendation process.

In our approach, if we have access to contextual information, we can model
it as predicates and include them in the postulates to refine them. In this way,
modeling and using different contextual aspects (e.g., weather, time or user
mood) at the same time becomes easier, as it is not necessary to define similarity
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metrics for these attributes. Instead, important aspects could be refined using
more detailed rules. We illustrate this with an example, adapted from [6].

Example 3. Consider the following rule:

recommend(Movie, User) — likes(User, Movie2), same_genre(Movie,
Movwie2).

Thus, we recommend a movie to a user based on the fact that she had liked
similar movies in the past. However, suppose that we know that this is typically
true except when the movie’s genre is action, the user is sad and the weather is
rainy. Then, we can refine the previous rule as follows:

~recommend(Movie, User) — likes(User, Movie2), same_genre(Movie,
Movwie2), genre(Movie, “Action”), mood(User, “Sad”), weather(“Rainy”).

This allows the recommender to modify its recommendations based on the
information it has about the weather (by connecting to one of the several web
services that provide that information) and the current user’s mood (e.g., using
mood-inference services such as MoodScope [30]).

The addition of rules in argument-based recommenders also facilitate the incor-
poration of new dimensions of analysis. For instance, we can think that users’
preferences slightly change over time, or are at least affected by it. If that is
the case, time can be used as a contextual feature in order to generate better
recommendations. To accomplish this we can add new rules that modify the rec-
ommendations over time, using defeasible argumentation formalisms that take
time into account [8].

However, the refinement of rules can be used for more than merely including
contextual information. If users’ feedback is available, we could look further
into those cases where the application of a postulate results in false positives or
false negatives. Then, a refinement of the postulate may be formulated in order
to help overcome the problem, as in the following situation.

Example 4. Consider the following rule:

recommend(Movie, User) — genre(Movie, Genre), favorite_genre(User,
Genre).

Then, we recommend a movie to a given user based on the fact that the
user likes its genre. However, assume that we find out (through users’ feedback)
that recommending Hollywood drama movies to users that live in South America
often causes false positives, as those users tend to dislike them. Then, a new
rule can be added to the program to state this, as follows.

~recommend(Movie, User) — genre(Movie, “drama”), favorite_genre(User,
“drama”), origin(Movie, “Hollywood”), lives_in(User, “’South America’).
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Notice that, as explained before, the interaction among the rules is at the
dialectical level, and thus they can coexist because the potential conflicts will be
handled by the argumentation process. Clearly this has a direct impact on the
recommender’s flexibility, as we can further refine recommendations for some
subset of users (or items) leaving the rest unchanged. In Example 4 we refine
recommendations for South American users, without losing the more general
case for users that live in other parts of the world.

4. The role of argumentation in recommendation

As we will show through this section, the use of argumentation allows to give
preponderance to those attributes that better define a relevant recommendation.
Argumentation also makes it possible to offer explanations as coherent sets of
reasons in favor or against a recommendation.

4.1. Argumentation-based recommendations

This section describes how the arguments are constructed, how the dialec-
tical process is carried out, and how it is used to make recommendations to
users. As it has been discussed in previous sections, rules in a DeLLP program
are combined to support or reject a conclusion by building arguments. An argu-
ment can be in favor or against a given conclusion, but cannot play both roles
at the same time. By contrast with other argumentation systems, arguments in
DeLP are derived from the logic program under analysis, and they have inter-
nal structure. This structure is what allows to provide an explanation on the
acceptability or not of a particular conclusion.

Figure 4 shows the arguments that have been computed to make a recom-
mendation to the user Ana. In this example we can see how arguments can
be built in favor or against recommending the movie Hulk to Ana. Figure 5
presents a dialectical tree resulting from these arguments.

In section 2.2, we stated that every argument attacked by at least one unde-
feated argument becomes defeated, and every argument without (undefeated)
attackers becomes undefeated. If the root argument of a dialectical tree is un-
defeated, the dialectical tree represents an argumentation process that supports
the conclusion of such argument. In addition, the DeLP reasoner builds a set
of dialectical trees, trying to give support or contradicting the arguments for or
against the query, and these arguments represent an explanation for such query.

Assume that the query under analysis is recommend (hulk, ana). In addi-
tion, suppose that the recommender system gives preponderance to the movies
performed by actors that the user likes, and to movies whose genres are liked by
the user over those movies with good rating. In this case, the system will evalu-
ate the actors who interpret the movie Hulk (Eric Bana, Jennifer Connelly and
Sam Elliott) as well as the movie’s genres (Action, Sci-F'i) to determine if Ana
likes any of the actors or any of the genres. Since “Jennifer Connelly” is among
the actors preferred by Ana and Ana likes “Action” movies, this evaluation will
be positive. So, we have a reason to believe that the user Ana would like the

17



[ Recommend(hulk, ana) ] [~ recommend(hulk, ana) ]

1 A

[ godd_rating(hulk) ] [~ Iike_by_ajti)r(hulk, ana) ]
[avg rating(hulk) = “4.67” ] bottom /actor(ana, * Eric Bana™),
— leads_in(hulk,  Eric Bana™).

(a) Argument in favor of recommending the movie Hulk (c) Argument against of recommending the movie Hulk

[ recommend(hulk, ana) ]

A

[ like_by_actor_genre(hulk, ana) ]

7 Y

[ top_actor(ana, “Jennifer Connglly™), ][ top_genre(ana, * Action™), ]

leads_in(hulk, ““Jennifer Connelly™). genre(hulk,  Action™).

(b) Argument in favor of recommending the movie Hulk

Figure 4: Arguments in favor and against recommending a particular movie.

movie Hulk, and according to our system this reason is better than the reason
to believe otherwise, i.e., we give that rule priority over the others. Thus, we
finally recommend the movie to the user.

4.2. Offering explanations for recommendations

In our previous examples we have stated the reason behind a recommen-
dation by using colloquial language to describe the structure of the argument
that has prevailed in the dialectical analysis. The simplicity of putting down
the structure of the prevailing arguments in natural language sentences leads
to another advantage of the argumentative approach: giving explanations to
recommendations is almost straightforward when they are based on arguments,
as they can be seen as self-explanatory set of reasons.

As a consequence, implementing a module for constructing explanations in
an argument-based recommender is a straightforward task. All that is needed is
to maintain an association between the structure of arguments and the schemas
of explanations, where the latter are parametrized by the variables in the struc-
ture of the former. This is fairly easy to do, since the number of rules we have
is finite (and often small). For the postulates used in this work, the association
can be constructed as shown in Table 4. For the sake of simplicity we only in-
troduce how to obtain explanations for positive recommendations, but negative
ones can be defined in a similar way using the proper postulates.

Then, when we obtain a dialectical tree supporting a recommendation, we
can use the supporting argument in a leaf node to obtain the proper values
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[ like_by_actor_genre(hulk, ana) ]
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top_actor(ana, “Jennifer Connelly™), top_genre(ana, ““ Action”),
leads_in(hulk, “Jennifer Connelly™). genre(hulk,  Action™).

Figure 5: Dialectical tree for recommending the movie Hulk to Ana.

for the variables in the schema of the explanation for the recommendation,
thus obtaining a complete explanation that can be presented to the user. For
instance, continuing with the recommendation scenario introduced in Section
4.1, we use the argument in the leaf node in the dialectical tree shown in Figure 5
to justify why the movie Hulk is recommended to the user Ana. This explanation
will take the form “Ana, Hulk is recommended to you because it has
one of your favorite actors, Jennifer Conelly, in a lead role and it
corresponds to one of your favorite genres, Action.”. Offering this kind
of explanations could help in building users’ trust, as has been studied in [45].
Moreover, it is possible to refine explanations further, by showing Ana the set
of movies she has liked in which Jennifer Conelly is a protagonist, as the reason
behind considering such actress as one of Ana’s favorite ones.

5. Empirical evaluation of the approaches: results and findings

This section evaluates the proposed framework and discusses the findings
resulting from these evaluations. The goal of the evaluation presented in this
section is two-fold. On the one hand, we carry out a comparison on the per-
formance of the postulates proposed in Section 3.2, in order to find out which
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Postulate/Argument Structure Schema for the reason behind Recommendation

Postulate 1: < recommend(Movie, User), User, Movie is recommended to you because its average
good_movie(Movie) — avg_rating(Movie) > 3.8 > rating is above the overall average.
Postulate 2: < recommend(Movie, User), User, Movie is recommended to you because it
likes_by_top genre(Movie, User) — corresponds to one of your favorite genres: Genre.
top_genre(User, Genre), genre(Movie, Genre) >
Postulate 3: < recommend(Movie, User), User, Movie is recommended to you because one of
likes_by_top actor(Movie, User) — your favorite actors, Actor, has a lead role in it.
top_actor(User, Actor), leads_in(Movie, Actor) >
Postulate 4: < recommend(Movie, User), User, Movie is recommended to you because it has one
likes_by_top actor(Movie, User) — of your favorite actors, Actor, in the lead role and it
top_actor(User, Actor), leads_in(Movie, Actor), corresponds to one of your favorite genres, Genre.

top_genre(User, Genre), genre(Movie, Genre) >

Table 4: Explanations for Postulates.

ones are the most suitable for developing the proposed argument-based movie
recommender system. On the other hand, we compare the performance of a
basic quantitative recommender with the performance of a mixed recommender
that refines quantitative recommendations with qualitative aspects.

Regardless of the two-fold goal of the evaluation, the experiments completed
to asses the performance of the recommenders involve the same actions: we take
a movie and attempt to predict whether the user liked the movie or not. To
conduct this evaluation, we completed a number of tests, which are described
next.

5.1. Experimental setup

The test set used for our evaluations was obtained from the enhanced Movie-
Lens Data Set presented earlier and consisted of 3000 ratings. These ratings
were randomly selected with the only provision being that they all came from
different users. By ensuring that the ratings used for the test set were associ-
ated with different users, we were able to evaluate the postulates for the general
case, avoiding the possible introduction of bias coming from the behavior of
particular users. On the other hand, the same movie may appear more than
once in the test set, as the same movie may occur in two ratings coming from
two different users.

The goal of our evaluation was to determine if the system was able to predict
if the user liked the movie or not. Therefore, for each rating in our test set we
posed the query “recommend(Movie, User)?” to the system to obtain the system
prediction. To ensure that the (movie, user, rating) triplet being validated had
no influence on the prediction made, we removed the corresponding record from
the training set.

An important remark about the possible results given by an argument-based
recommender system is that the possible outcomes can be positive (i.e., the
movie is recommended to the user), negative (i.e., the movie is not recom-
mended to the user) or undecided. The last case arises when the system cannot
warrant recommending or not recommending a movie to a user, leading to an
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undecided result as explained in Section 2.2. We would like to stress out that
such undecided results should not be interpreted as the recommender saying
that the movie X is not recommended to user Y. That is, undecided results are
not a particular kind of negative recommendations. Instead, they mean that
the recommender neither does support nor does it negate the recommendation.
Further in the paper we will have a better look into how undecided results are
considered to measure the efficiency of recommendations.

To perform the tests, we pose each of the 3000 queries to the recommender.
Then, we classify every response in one of the following classes, according to the
response obtained and the rating the user gave to the movie:

e True Positive (TP): the system suggests that the user will like the movie,
and the user rated the movie with a four or greater value.

e True Negative (TN): the system suggests that the user will dislike the
movie, and the user rated the movie with a three or lower value.

e False Positive (FP): the system suggests that the user should watch the
movie, and the user rated the movie with a three or lower value.

e False Negative (FN): the system suggests that the user should not watch
the movie, and the user rated the movie with a four or greater value.

e Undecided (U): the system neither suggests nor negates the recommenda-
tion.

This experiment is repeated for different subsets of postulates, leading to a
comparison among the postulates. This comparison will be discussed in detail
later.

5.2. Performance metrics

In order to evaluate different aspects of the resulting family of recommenders
we have used several Information Retrieval (IR) performance metrics. While
these metrics are common in IR setting, some of them are not entirely suitable
for our scenario, where we have undecided results. Notice that undecided results
are not exactly a class on its own because movie recommendations are not
intentionally classified as undecided, but rather they are left unsolved by the
system. Then, we are not in the presence of a multi-class classification problem,
but we are not dealing with a purely binary classification either. For instance, we
cannot directly take the obtained results into a standard two-by-two confusion
matrix. Rather, we have a binary classification augmented with the additional
undecided state. Next we present the performance metrics used in the evaluation
of the family of recommender systems, stating whether or not these metrics may
be influenced by the presence of undecided results, and how the problem is solved
in case they do.
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Precision. This is a traditional metric that measures how accurate are the rec-
ommendations given by the system. Precision is defined as the number of re-
trieved relevant resources divided by the total number of retrieved resources.
Often, the precision of a system is seen as a measure of the quality of the re-
trieved resources. In our movie recommendation scenario precision is computed
as the number of movies that the system correctly predicts as movies that the
user will like to watch (i.e., the number of true positives) divided by the total
number of movies recommended positively (i.e., the sum of true positives and
false positives). Summarizing, we have that:

TP

Precision = ————=.
recision = -5 T FP

Notice that undecided results do not affect the recommender’s precision,
which makes sense since those movies for which the answer is undecided are not
retrieved at all.

Recall. While precision is about quality, recall involves the notion of quantity
and measures how exhaustive the recommendations made by a system are. It is
defined as the number of retrieved relevant resources divided by the number of
relevant resources. In the movie recommendation domain it can be computed
by dividing the number of movies correctly recommended by the total number
of movies that are worth recommending (regardless whether the prediction is
positive, negative or undecided). Thus, recall should be influenced by undecided
results as well as positive and negative ones, but we cannot state if an undecided
answer stands for a recommendation for the movie or not. For this matter, we
have chosen to use the following formula, which directly considers the number
of relevant movies in the dataset:

TP

RM’

where RM is the number of cases (out of the 3000 tested ratings) for which the
actual rating given by the user is equal or greater than four. This means that
RM accounts for the total number of triplets (movie, user, rating) in our test
set where rating > 4 (which means that the movie should be recommended,
and hence it is relevant). Notice that such measure may be unusable in some

recommendation settings where the number of relevant documents cannot be
obtained.

Recall =

Accuracy. Accuracy stands for the fraction of resources predicted as positive
or negative for which the prediction was correct. From this it follows that
undecided answers should not influence accuracy because for these cases no
prediction is made. Then, we use the usual formula for accuracy, which is as

follows:
TP+ TN

A - .
CCuracy = Tp I TN + FP + FN
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F-Score. A measure that considers both the quality and the quantity of the set
of resources retrieved by a system at the same time is the F-score, which is the
weighted harmonic mean of precision and recall. The general formula for the
F-score weighted by a parameter 3, which we denote by F{g), is:

(1 + B2) x (precision x recall)
(82 x precision + recall)

Fg — score =

where ( is a non-negative real number such that if 5 = 1 then the formula
measures recall and precision with the same weight, if 8 < 1 then precision is
considered more important, and otherwise recall is more important.

5.3. Results

Next we present the results obtained in the experiments that were carried out
to test the different recommendation approaches. The first set of results shed
light on the effectiveness of different combinations of postulates. Then, the
second set of results is used to determine if a mixed recommendation approach
accounting for both quantitative and qualitative aspects performs better than
a purely quantitative approach.

5.3.1. Recommendation effectiveness of the different postulates

In order to compare the effectiveness of the different sets of postulates, we
have calculated the metrics proposed in Section 5.2 for each one of the postulates
as well as for different combinations of them. As a remark, the number of records
with relevant movies (i.e., those records out of the 3000 records from the test
set where the user had rated the movie with a value equal or greater than four)
is 1977. Table 5 presents the results for different sets of postulates using the
test set consisting of 3000 ratings. The performance metrics computed for the
different combinations of postulates is summarized in Table 6.

Postulate 1 1449 609 414 528 0

All Postulates 1619 585 441 355 0
Postulate 2 551 163 142 132 2012
Postulate 3 576 97 57 21 2249
Postulate 4 129 17 8 2 2849
Postulate 2 + 3 991 234 194 117 1464
Postulate 2 + 4 551 163 142 132 2012
Postulate 3 + 4 529 85 47 14 2325
Postulate 2 + 3 + 4 991 234 194 117 1464

Table 5: Results for different sets of postulates.
Notice that the lowest precision (0.78) is achieved when only Postulate 1

is used. This case can be taken as a baseline for comparison, as Postulate 1
takes into account quantitative information only. On the other hand, the best
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Postulates | Metric

Postulate 1 0.78 0.73 0.41 0.75 0.77

All Postulates 0.79 0.82 0.44 0.80 0.79
Postulate 2 0.80 0.28 0.24 0.41 0.58
Postulate 3 0.91 0.29 0.25 0.44 0.64
Postulate 4 0.98 0.07 0.07 0.12 0.26
Postulate 2 + 3 0.84 0.50 0.35 0.63 0.58
Postulate 2 + 4 0.80 0.28 0.24 0.41 0.58
Postulate 3 + 4 0.92 0.27 0.23 0.41 0.62
Postulate 2 + 3 + 4 0.84 0.50 0.35 0.63 0.58

Table 6: A summary of the performance of the different sets of postulates.

precision value (0.98) was achieved when Postulate 4 is used. This postulate
combines qualitative information about the actors and about the genres that
the user likes. Nevertheless, it is clear that such a high precision, achieved
by Postulate 4, comes at the cost of a very poor recall (0.07), which can be
interpreted as that the recommender based on this postulate only recommends
a movie to a user if it has high confidence that the user will like it.

Also, it is interesting to note that the qualitative postulates (Postulates 2,
3 and 4) are superior in terms of precision to the combination of qualitative
and quantitative postulates (All Postulates). Nevertheless, we should observe
that the quantitative approach achieves considerably superior recall than the
qualitative approaches. While for the movie recommendation domain, precision
is more important than recall, other application domains, such as medical diag-
nosis, may greatly benefit from achieving high recall. As a final remark on this
matter, we would like to stress out that for the case when all postulates are
considered together the number of cases solved by qualitative recommendations
for the experiments presented in the paper is the sum of the cases solved by
considering Postulates 2, 3, and 4 altogether; that is, the sum of the cases in the
final row in Table 5, which adds up to 1536. Thus, when we considered together
the quantitative and qualitative postulates in a mixed recommender more than
50% of the cases (1536 out of 3000) are solved by taking into account aspects
arising from the qualitative approach.

5.8.2. Quantitative approach vs. mized approach

The specific goal of this part of the experimentation is to shed some light
on the question of whether augmenting a basic quantitative recommender with
qualitative aspects does in fact result in significant improvements.

In order to measure this, we have posed the 3000 queries to two different
DBI-DeLP programs. The first program has as its only case for recommendation
Postulate 1, and hence it is a purely quantitative recommender using only the
average rating of movies for recommendations. The second program stands for
the mixed approach and uses Postulates 1, 2, 3 and 4 to determine if a certain
movie should be recommended to some user or not. As a remark, for the mixed
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recommender the priority among postulates is as follows:
Postulate 4 > Postulate 3 > Postulate 2 > Postulate 1.

The reason behind this choice is that, for our movie recommendation scenario,
we prioritize precision over recall, as we prefer to recommend a small number
of movies to the users if that means that the users will tend to agree with our
recommendations. Then, we have chosen to establish this priority according to
the results shown in Section 5.3.1. Notice that the presented priority scheme
means that the most important Postulates for this particular recommender are
the qualitative ones. Thus the disagreement between the quantitative approach
and some of the qualitative approaches is always solved in favor of the qualitative
ones. In practice, this causes that answers obtained based on the quantitative
aspects are refined (by overriding them) by the qualitative aspects, even for
those cases when the recommendations coincide.

The results of comparing the purely quantitative approach with the mixed
approach are summarized in Table 7:

----

Quantitative recommender 1449
Mixed recommender 1619 585 441 365

Table 7: Results obtained by the quantitative and mixed approaches.

In order to determine if the improvements achieved by the mixed recom-
menders were statistically significant, we divided the 3000 ratings in our test
set into 30 samples of 100 items each. Based on the obtained results, a sta-
tistical analysis was performed. Table 8 presents the results obtained by the
quantitative approach, and Table 9 presents the ones for the mixed approach.
We report the means (MEAN), standard deviations (STDEV) and confidence
intervals at the 95% level (95% C.1.) for each type of answer.

Type of answer \ Parameter MEAN STDEV 95% C.1.

48.30 4.92 [46.54, 50.06]
™ 20.30 4.04 [18.86, 21.74]
FP 13.80 2.68 [12.84, 14.76]
FN 17.60 373 [16.27, 18.93]

TP+TN 68.60 438 [67.03, 70.17]

Table 8: The mean, standard deviation and 95% confidence interval for the quantitative
approach.

5.4. Analysis of findings

Several conclusions can be drawn from the previous experiments considering
first which is the best combination of Postulates in our movie recommenda-
tion scenario and second whether or not the refinement of a basic quantita-
tive approach with qualitative aspects does in fact improve performance. We
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Type of answer \ Parameter MEAN STDEV 95% C.1.
TP

53.97 5.16 [52.14, 55.80]

™ 19.50 437 [17.94, 21.06]
FP 14.70 3.17 [13.56, 15.83]
FN 12.17 373 [10.83, 13.50]
TP+TN 73.47 3.32 [72.28, 74.65]

Table 9: The mean, standard deviation and 95% confidence interval for the mixed approach.

complement such analysis with a comparison between our approach and some
state-of-the-art methods, both in terms of plain results and by considering the
benefits and disadvantages of the applied techniques.

5.4.1. Effectiveness of the Postulates

The precision and recall metrics indicate the effectiveness of a recommender
from two different sides: the quality and the quantity of the recommendations.
Over the years, empirical studies have shown that raising a system’s recall typ-
ically comes at the expense of a decrease in its precision [7, 1]. As can be seen
in the performance of our recommender, the precision-recall trade-off is present
here as well: those combinations of postulates that result in the lowest precision,
are those which achieve the highest recall, while the one with the best precision
(Postulate 4) has a very low recall.

Certainly, different application domains will give different precedence to pre-
cision and recall. As indicated before, in a medical diagnosis application domain
recall is frequently regarded as more important than precision, as it is accept-
able to increase the number of false positives if that means to also increase the
number of suggested possible causes for a given symptom. This would minimize
the possibility of leaving an illness undetected. However, in the movie recom-
mendation domain we regard quality as a more important aspect than quantity.
That is, we claim that it is preferable to recommend a small number of movies
which the user will most certainly like than to present a large number of unreli-
able recommendations. Notice that there is no real advantage in recommending
to the user hundreds or thousands of movies because users certainly cannot
watch them all at the same time. In addition, presenting too many movie rec-
ommendations probably means that several of them are wrongly recommended,
wasting the users’ (movie) time and not fulfilling the system’s goal as a recom-
mender. Besides, it can always be the case that after the users have watched the
recommended movies they ask for newer recommendations, possibly considering
new information (both the rating given to the recommended movies and newer
films), assuming that the datasets are updated.

Bearing that setting in mind, we focus the analysis of the performance of the
Postulates by prioritizing precision over recall. Moreover, we focus the analysis
on positive recommendations (i.e., in favor of watching a movie) rather than
on negative ones (i.e., in favor of not watching a movie). The obtained results
regarding TP, TN, FP and FN are shown in Figure 6. A comprehensive precision

26



and recall chart can be seen in Figure 7.

1800
1600
1400 A
1200 A
1000
800 - mTP
600 - TN
400 -

200 - —
0 A T T T II FN

FP

Figure 6: The results obtained by the different combinations of Postulates.

It is important to remark that the performances of all the evaluated pos-
tulates is quite good, given that the lowest precision achieved was 0.78. At a
first glance, it is evident that Postulate 4 (i.e., recommending a movie to a user
based on the user’s favorite movie genres and actors at the same time) is the
most precise approach, and it virtually does not fail when it makes a recommen-
dation, with only five wrong answers among the 141 recommendations given,
three of them being false positives (over 132 positive recommendations). Also,
notice that the large UNDECIDED ratio of Postulate 4 (2849:3000) severely
affects its recall, which is explained by the fact that, being the most specific
Postulate, it is difficult to find two qualitative reasons (the movie genre and the
actors) that simultaneously support the recommendation.

Another important point to notice is that Postulate 3 (which recommends
based only on the actors of a movie) has also a really high precision (the differ-
ence with Postulate 4 being only 0.07) and greatly improves recall (a difference
of 0.22 in favor of Postulate 3). Although we claim that for this application do-
main precision is more important than recall, this small difference in the quality
of the results, along the significant difference in the quantity of recommended
results makes Postulate 3 a proper contender to Postulate 4. This is more evi-
dent if we consider their F g 5y-score (which praises precision over recall), with
a difference of 0.38 in favor of Postulate 3. Additionally, the combination of
Postulate 3 and Postulate 4 has also a very good performance, as expected.

As a final remark, we would like to stress out that the difference in the
precision between recommending based on the users’ favorites actors (Postulate
3) and based on the users’ favorites genres (Postulate 2) seems to indicate that
the actors performing in a movie are better descriptors of the users’ preferences
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Figure 7: The precision and recall obtained by the different combinations of Postulates.

than a movie’s genres.

5.4.2. Comparison of the quantitative approach with the mized approach

The subsequent part of our analysis intends to find out if there is a significant
improvement in the performance of the quantitative approach when we refine
its answers by means of qualitative aspects. The first thing interesting to note is
that this combination has resulted in an increase in the number of true positives
but no other improvements were observed. Thus, it seems that, when it comes
to recommendations regarding not to watch a movie the difference between
them is small, and moreover it is slightly in favor of the quantitative approach.
Nevertheless, as pointed out before, the most important recommendations for
our movie setting are the positive ones.

We can see that, for the 3000 tested cases, the mixed approach obtains
170 more true positives than the quantitative approach. In addition, the results
presented in tables 8 and 9 indicate that the mixed approach results in significant
improvements in the number of TP over the quantitative approach. Finally,
notice that the improvements are also statistically significant if we consider the
entire set of correct answers obtained by the approaches, i.e., if we consider the
number of TP and TN together, even when that is not the case if we consider
the TN rate of the recommenders alone.

The experimental results presented in this section highlight the fact that the
incorporation of qualitative aspects in a recommender not only helps to provide
transparency but can also result in significant improvements over more basic
quantitative approaches.
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5.5. Comparison with some state-of-the-art methods used in movie recommen-
dation

In order to complete the analysis of our proposal we provide a compari-
son between our work and some state-of-the-art approaches to recommendation
stemming from quantitative techniques. To evaluate the performance of novel
recommendation techniques for the movie domain, most works conduct an offline
experiment by using a pre-collected dataset of users’ ratings. Two main method-
ologies for reporting performance are typically adopted: on the one hand, the
system’s prediction is regarded as a binary classification problem and therefore
metrics such as precision, recall and their derivatives are computed. On the
other hand, if the system attempts to predict the rating a user would give to a
movie, a measure of the accuracy of the system’s predicted ratings, such as the
root-mean-square error (RMSE), is usually reported.

As has been acknowledged in previous research (e.g., [19]) the second method-
ology is not suitable for scenarios where only Boolean outcomes (such as positive
and negative recommendations) are possible, as it is the case in our argumentation-
based recommendation setting. Therefore, we restrict our comparative analysis
to works that adopt a precision-oriented evaluation approach. Among these
works, we have not found any example in the literature using exactly the same
dataset employed in this work, the 10M MovieLens dataset, but rather the ex-
periments were mostly carried out using the 100K and 1M versions. Due to
these limitations, a completely fair comparison between our work and other
state-of-the-art techniques is not possible. As a consequence, we provide an
approximate comparison between our work and three different recent proposals.
The first method selected for comparison is based on a novel Bayesian similar-
ity metric [23], the second method is a content-based approach supported by
Linked Open Data [14] and the third method is a hybrid approach based on
Estimation of Distribution Algorithms [29].

5.5.1. A comparison with a recommender based on a novel Bayesian similarity
metric

In [23], a novel Bayesian similarity (BS) approach to measure user similarity
is introduced. The proposed similarity measure is based on Dirichlet distri-
bution, taking into consideration both the direction and length of the rating
vectors. Such measure helps to overcome several issues coming from computing
the cosine similarity or the Pearson correlation coefficient in collaborative fil-
tering approaches. Among the most important benefits of this novel similarity
measure is that it diminishes chance correlation (where users are deemed as
“similar” only due to a small number of co-rated items). The paper reports
an empirical analysis on six real-world datasets, where the experiments indicate
that the BS method generates more realistic and distinguishable user similarities
than the baseline methods selected for comparison.

In order to compare the BS approach with our approach we focus on the ex-
periments reported by the authors for a movie recommendation scenario based
on the 100K version of the MovieLens dataset. It is important to mention
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that a direct comparison of the precision values obtained by the BS and our
approaches will certainly not be fair, as they present several precision at N
(p@n) results, going from 2 to 20 recommendations. Notice that we have not
ranked and restricted the number of recommendations considered from the total
of 3000 cases, as we only have binary responses, i.e., to recommend or not to
recommend. Thus, in a sense, our results can be seen as reporting “precision at
rank 3000”. While the performance obtained by BS is very high, the precision
decreases as the recommendation list grows: while for 2 recommendations the
precision obtained is 0.9801, for N = 20 the precision is 0.8338. Thus, consid-
ering that we have obtained a precision value of 0.98 for a list of length 3000
(Postulate 4), we can conclude that the performance in terms of precision of
our approach is not inferior to that achieved by the BS method. However, as
expected, there is a significant difference in terms of recall in favor of the BS
approach. Nevertheless, as argued earlier, we consider that in a movie recom-
mendation scenario recall is not a crucial factor, and it may be preferable to
trade-off some recall to obtain benefits that could be more significant, such as
natural language explanations.

5.5.2. A comparison with a recommender supported by Linked Open Data

A different approach to movie recommendation is taken in [14], where the
key idea is to exploit the information encoded in RDF available on the Web
of Data. Such information is used to develop a content-based recommender
that leverages the data available within Linked Open Data (LOD) datasets, in
particular DBpedia, Freebase and LinkedMDB. Based on such information, the
authors propose a vector-space-model approach that is used to determine simi-
larities between RDF resources in LOD to generate recommendations. Similarly
to our approach, the LOD-based recommender augments the information asso-
ciated with movies using additional data sources. In this case, the data provided
by MovieLens is linked to LOD sources (DBpedia). Another similarity to our
proposal is that the LOD-based recommender assumes that if two movies share
some information (e.g., part of the cast), then they are related to each other,
exploiting such a relation at the moment of defining a user profile. On the other
hand, differently from our approach, similarity is determined in a quantitative
manner, based on the RDF graph associated with the resources.

The LOD-based recommender is tested using the 1M version of the Movie-
Lens dataset, and as in the BS approach, precision and recall at different ranks
are reported. The approach is compared with other non-LOD keyword-based
recommender systems, showing that the proposed approach outperforms them.
As it is typically the case, precision tends to decrease (and recall to increase) as
more recommendations are taken into account. If only the top recommendation
is considered (p@1) then the approach achieves a precision of 0.834 with a recall
of 0.06. For the maximum computed rank (p@20) the recommender achieves a
precision of 0.707, with a perfect recall. Once again, according to the reported
results, we can conclude that our approach outperforms the LOD-based ap-
proach in terms of precision, and although it has an inferior recall, the achieved
results are not substantially inferior than most of those reported in [14].
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5.5.83. A comparison with a recommender based on Estimation of Distribution
Algorithms

Another approach to movie recommendation is presented in [29], where a
novel hybrid recommendation system which takes advantage of collaborative
filtering and content-based mechanisms is introduced. A salient feature of this
system is the application of the Estimation of Distribution Algorithms (EDAs)
to learn users’ preferences. The users’ preferences are then combined into user
interest profiles, which are used to accurately describe users’ interest features.
Based on the user interest profiles, the content-based mechanism of the model
is able to recommend new items to users. In the meantime, the collaborative
filtering mechanism suffers less from the sparsity problem because user similarity
is determined by the user profiles rather than by the user-item matrix.

The proposed approach is tested using an extension of the 1M version of
the MovieLens dataset. Like in our approach, the features associated with each
movie are augmented with additional information (directors, writers, actors,
genres) obtained from IMDb. The EDA-based approach is compared with other
approaches, such as kNN (for k = 30) and Naive Bayes, showing that it outper-
forms them. The precision at rank 5 achieved by the EDA-based approach is
0.955 while the precision at rank 10 is 0.873. General precision and recall values
are also computed with different parameter settings for the EDAs, achieving a
precision that fluctuates between 0.736 and 0.772, and a recall that varies from
0.734 to 0.726. Once again we are in the presence of a system whose precision
is inferior than that achieved by our approach. On the other hand, the recall
obtained by the EDA-based approach is superior to that achieved by our pro-
posal, except when all postulates are used, where our approach achieves a recall
of 0.82.

5.5.4. Final comparison

To sum up, Table 10 presents a final comparison of the performance of
the analyzed methods. In this table we report the best performance obtained
by each of the approaches in terms of precision, also including the number of
recommendations for which such result was obtained.

Method Results @ N

All postulates N = 3000 0.79 0.82
Qualitative postulates (2 + 3 + 4) N = 3000 0.84 0.50
Postulate 4 alone N = 3000 0.98 0.07

BS N=2 0.98 0.45

LOD N=1 0.83 0.06

EDA N=5 0.95 0.73

Table 10: Comparison with state-of-the-art methods on movie recommendation.

From the analysis of Table 10 we can conclude that the effectiveness of our
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approach is by no means significantly inferior to that of the other approaches.
In addition it is important to emphasize the main advantages of our proposal:

e Transparency: although the final users cannot perceive the dialectical
process leading to the recommendation (which is clearly not necessary),
they have access to clear, natural language explanations of the reasons
underlying the given recommendations. This feature helps in building
users’ trust and improves feedback capabilities.

e Flexibility: the use of rules facilitates the definition of quantitative and
qualitative criteria to guide the recommendation process. This is com-
plemented by a simple approach to define argument preference criteria.
Moreover, the proposed approach makes it possible to go from a content-
based recommender to a collaborative filtering one fairly easily, or even
mix them in arbitrary ways, just by switching priorities between rules.

In our opinion, there is no better general approach, and it is the application
domain and the users’ needs what dictate which is the best method to adopt.
For instance, for the movie recommendation scenario the possibility of provid-
ing natural language explanations to recommendations seems to be appealing
enough even if it comes at the expense of some loss in precision or recall. In
other scenarios one could argue that explanations are not that important, while
achieving high performance is crucial. In general terms we think that quantita-
tive and qualitative approaches are not at all opposed or excluding each other,
but rather complementary. They could greatly benefit from each other, in a sim-
ilar way as by integrating content-based and collaborative-filtering techniques.

6. Related Work

To the best of the authors’ knowledge, this is the first attempt to provide
an argument-based approach to movie recommendation with the capability of
justifying the suggested items. However, the problem of providing recommenda-
tions augmented with justifications has already been studied in previous works.
Sinha and Swearingen [43] present an analysis in which they examine the role
of transparency in recommender systems, i.e., the importance of a user un-
derstanding why a particular recommendation was made. In their work, they
present a study that indicates that users prefer transparent recommendations
over non-transparent ones. For new items, this result is not surprising. However,
the study also shows that users prefer to know why an item was recommended
even for those items they already know and like. This suggests that users are
not just looking for blind recommendations from a system, but are also looking
for a justification of the system’s choice.

Tintarev and Masthoff [45] provide a comprehensive review of explanations
in recommender systems. In their work they argue that “a good explanation
could help inspire user trust and loyalty, increase satisfaction, make it quicker
and easier for users to find what they want, and persuade them to try or purchase
a recommended item”. Furthermore, one can see that explanations must possess
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certain characteristics. For instance, one can measure how understandable an
explanation is, which can contribute to transparency, user trust, as well as user
satisfaction.

Several research works on recommendation systems have focused on the spe-
cific domain of movie recommendation. For instance, Basu, Hirsh and Co-
hen [3] present an approach that uses rating information and user preference
to implement a social and content-based movie recommender. In their work
they present an inductive learning approach to recommendation, formalizing
the recommendation problem as a learning problem. They use Ripper, a rule
induction system, to learn a function that takes a user and movie and pre-
dicts whether the movie will be liked or disliked, combining collaborative and
content information. In another work, Melville, P., Mooney, R. J. and Nagara-
jan, R. [34] propose a framework for implementing a hybrid movie recommender.
This approach, called content-boosted collaborative filtering recommender, uses
external content information to produce predictions for new users or new items.
The content-boosted collaborative filtering recommender has improved predic-
tion performance over some pure content-based recommenders and some pure
memory-based collaborative filtering algorithms.

Differently from the above proposals, our work incorporates argument-based
inference to the movie recommendation process. In order to support a recom-
mendation for a particular movie, the system performs a qualitative and quanti-
tative analysis on various aspects of a movie (such as the genre, actors, directors,
screenwriters, etc.) and on the preferences that a particular user has. More-
over, the recommender not only provides a binary response (recommend or not
recommend) but also provides a justification for this answer.

The problem of empowering recommendation with argumentation has been
previously addressed in [11]. An argument-based recommendation system for
the music domain was introduced in [6]. Further theoretical analyses and sim-
ulations aimed at combining quantitative and qualitative aspects to generate
argument-based news recommendations were presented in [5]. The work pre-
sented here extends these results by describing a novel framework for the specific
domain of movie recommendations. Most importantly, it presents an empirical
study where classical evaluation metrics are used to determine the effectiveness
of the proposal.

7. Conclusions

We have introduced an argumentation-based approach with the capability
to improve recommendation technologies. The proposed approach has some
strengths that can be proven handy in recommendation scenarios. For instance,
argumentation can be used to perform a qualitative analysis on users and items.
This allows us to go a step further with respect to the classical approach, giving
rise to mixed recommendation systems, i.e., systems that base their recom-
mendations on both qualitative and quantitative aspects of the domain. In
particular, this approach can make it easier to take several aspects into consid-
eration before giving the final recommendation to the user. These aspects can
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be applied to model some useful features that are sometimes hard to take into
account in purely quantitative approaches. For instance, the defeasible nature
of users’ preferences in complex environments. The quantitative approaches
to recommendation are typically based on the use of a number of parameters,
which makes the interpretation of the results non intuitive. In our proposal,
it is possible to express in a colloquial way the reason behind each recommen-
dation. In addition, we can model restrictions to recommendations based on
heterogeneous contextual information (e.g., weather or users’ moods).

A useful feature of our formalism is that in order to include a new aspect
(postulate) we state it in the form of one or more DeLP rules, and state the
preference assigned to these rules. This rule-based modeling of aspects allows to
give recommendations based on quantitative criteria (if the rules model them),
or qualitative criteria. In the meantime, the use of preferences leads to another
advantage: we can go from content-based approaches to collaborative filtering
approaches fairly easily, just by switching priorities between rules. Another
useful feature is the use of coherent structures of reasons (arguments) to gener-
ate explanations for the recommended items. These reasoned explanations are
useful in building users’ trust and allowing feedback interaction.

We have also provided a comparative analysis between our approach and
some state-of-the-art techniques for movie recommendation. It follows from
this analysis that the performance of our approach is comparable to that of
other existing approaches. Although not superior, it is not substantially in-
ferior either. It is important to emphasize that the main advantages of our
approach with respect to other state-of-the-art methods are its transparency
(which promotes users’ trust) and its flexibility (which facilitates the modeling
of different criteria in a natural way).

Finally, it is important to mention that the experiments conducted showed
that the argumentation process on which recommendations are based can deal
with massive amounts of data, such the 10M MovieLens dataset, as the av-
erage response time for the queries was about two seconds. To the best of
our knowledge, this is the first time that Defeasible Logic Programming (more
precisely, its database-enabled extension) is tested on a very large real-world
dataset (such as 10M MovieLens), providing a precedent for its use in massive
real-world expert systems.

Future work may be done in different directions. In the first place, we plan
to conduct a user study to determine the merits of the explanations presented
by the system. Since these explanations are based on rational arguments, they
are based on facts and reasons that conform with users’ beliefs. As a conse-
quence, we can assume that the given explanations are suitable from a ratio-
nal perspective. A user study will shed light on interesting issues such as the
role of rationality in movie preference. In particular, it could help answer the
essential question of whether people are based on rational arguments at the
moment of selecting a movie or if irrational or emotional arguments can have a
higher influence. On a related subject, we plan to compare the performances of
argument-based context-aware recommender systems with the ones proposed in
this paper, in order to find out whether or not contextual aspects (e.g., users’
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mood, weather, etc.) play an important role in recommendation. Finally, to
further elaborate on this last subject we are currently working on an extension
of the formalism presented here for modeling context changes through time, to
obtain different results for the same query when it is formulated at different
time points.
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