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Abstract. Formulating search queries based on a thematic context is a challeng-
ing problem due to the large number of combinations in which terms can be used
to reflect the topic of interest. This paper presents a novel approach to learn topi-
cal queries that simultaneously satisfy multiple retrieval objectives. The proposed
method consists in using a topic ontology to train an Evolutionary Algorithm that
incrementally moves a population of queries towards the proposed objectives. We
present an analysis of different single- and multi-objective strategies, discuss their
strengths and limitations and test the most promising strategies on a large set of
labeled Web pages. Our evaluations indicate that the tested strategies that apply
multi-objective Evolutionary Algorithms are significantly superior to a baseline
approach that attempts to generate queries directly from a topic description.

Keywords: topic ontologies, topical queries, semantic similarity, multi-objective evo-
lutionary algorithms, query effectiveness.

1 Introduction

Reflecting a topic of interest in a query is an important research problem in the area
of topic-based search. Automatic topical search can be achieved by automatically for-
mulating queries with terms extracted from a thematic context. Applications for topical
search can be built on top of existing search interfaces and can be used in different
scenarios, such as searching for information in context [3], fulfilling long term infor-
mation needs [25], collecting resources for topical Web portals [5], or accessing the
Deep Web [13], among others.

From a theoretical perspective, the problem of topical search can be seen as an
optimization problem where the objective function to be maximized quantifies the op-
timality of a query. In this optimization problem, therefore, the search space is defined
as the set of possible queries that can be presented to a search interface. Multiple objec-
tives such as high precision and high recall can be used as criteria for evaluating query
performance.

Unfortunately, dealing effectively with the problem of topical search is very hard
(both theoretically and computationally). If the query is too specific, the response could
be empty or it may contain too few documents. On the other hand, if the query is too



broad, the answer set may be too large and the most useful material will be hard to iden-
tify. In addition, the problem of query optimization does not have optimal substructure,
which means that an optimal solution cannot be constructed efficiently from optimal so-
lutions to its subproblems [7]. Therefore, existing methods to solve complex problems
by breaking them down into simpler steps are not effective for our purpose. In addition,
we may be interested in finding many near optimal queries rather than a single optimal
one.

Given the characteristics of this optimization problem, Evolutionary Algorithms
(EAs) [12, 10] appear as promising techniques for learning to automatically formulate
high-quality topical queries. EAs are general-purpose search procedures based on the
mechanisms of natural selection. An important component in EAs is the fitness func-
tion, which in combination with the selection mechanism determines which elements of
the population are selected to be members of the next generation. Therefore, it is neces-
sary to establish some criteria to determine if one solution is better than another. In the
multi-objective case, there is not only one criterion to conclude whether one solution
is better than another. The strategy adopted in this work applies the concept of Pareto
optimality [21] as well as an aggregative techniques based on the harmonic mean of the
given objectives to rank the queries in a manner such that the most promising ones have
a higher probability of being selected.

The proposed framework uses a topic ontology to train and test the EAs. The docu-
ments classified in the ontology are used to create two large, non-overlapping indices: a
training index and a testing index. The framework uses the training index together with
information about the content and structure of the ontology to evolve a population of
topical queries. In brief, the key features of this work are:

– Novel methods for evolving topical queries based on training data derived from
topic ontologies.

– Novel criteria for assessing query quality, based on the content and structure of
topic ontologies.

– A study of the effectiveness of strategies based on single- and multi-objective EAs
for the problem of topical query optimization.

2 Background

2.1 A Brief Overview of Single- and Multi-Objective Evolutionary Algorithms

EAs [12, 10] are robust optimization techniques based on the principle of natural selec-
tion and survival of the fittest, which claims “in each generation the stronger individual
survives and the weaker dies”. Therefore, each new generation would contain stronger
(fitter) individuals in contrast to its ancestors.

To use EAs in optimization problems we need to define candidate solutions by chro-
mosomes consisting of genes and a fitness function to be maximized. A population of
candidate solutions (usually of a constant size) is maintained. The goal is to obtain better
solutions after some generations. To produce a new generation EAs typically use selec-
tion together with the genetic operators of crossover and mutation. Parents are selected
to produce offspring, favoring those parents with highest values of the fitness function.



Crossover of population members takes place by exchanging subparts of the parent
chromosomes (roughly mimicking a mating process), while mutation is the result of a
random perturbation of the chromosome (e.g., replacing a gene by another). Although
selection, crossover and mutation can be implemented in many different ways, their
fundamental purpose is to explore the search space of candidate solutions, improving
the population at each generation by adding better offspring and removing inferior ones.

In Multi-Objective Optimization Problems (MOOPs) the quality of a solution is
defined by its performance in relation to several, possibly conflicting, objectives. Tra-
ditional methods are very limited because, in general, they become too expensive as
the size of the problem grows [16]. EAs are a suitable technique for dealing with
MOOPs [6, 8, 10] and are called in this case Multi-Objective Evolutionary Algorithms
(MOEAs). There are many approaches to multi-objective optimization using MOEAs,
and in general, they can be classified in Pareto or non-Pareto EAs. In the first case, the
evaluation is made following the Pareto dominance concept [21]. Dominance is a par-
tial order that could be established among vectors defined over an n-dimensional space.
Figure 1 shows an example of using this concept. By means of a Fitness Function we
could define a relation between vectorsxi in a search spaceand vectorsui in an ob-
jective space. A non-dominated set of a feasible region in the objective space defines a
Pareto Frontover that region and the set of its associated vectors in the search space is
calledPareto Optimal Set. The Pareto-based algorithms use the concept of domination
for the selection mechanism to move a population toward the Pareto Front. Whereas in
the non-Pareto EAs, the objectives are combined to obtain a single evaluation value to
be used for the selection mechanism.
Besides the Pareto or non-Pareto strategy, the EAs can be classified in elitist and non
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Fig. 1. Illustrative example of Pareto Dominance concept and a Fitness Function application.

elitist EAs. The difference resides in that the first uses a mechanism to retain the non-
dominated individuals. In the last years, a great number of elitist Pareto-based EAs
were developed. Several of them have shown very good performance in problems with
objective space of size less or equal than four [8].

The Non-dominated Sorting Genetic Algorithm – II (NSGA-II) is one of the most
studied and efficient EAs [9], consequently it was used in this work. The algorithm
begins by creating a random parent populationP0 of sizen. The population is sorted
based on the non-domination concept. Each solution is assigned a fitness (or rank) equal
to its non-dominated level (1 if it belongs to the first front, 2 for the second front, and
so on). In this order, minimization of fitness is assumed. After ranking the solutions, a
population ofn offsprings,Q0, is created using binary tournament selection, recombi-
nation and mutation. The elitism is reached by comparing the current population with



previously found best non-dominated solutions. Theith generation follows the next
steps:

1. A combined populationRi = Pi ∪ Qi of size2n is formed.
2. Ri is ordered according to non-domination. Since all previously and current pop-

ulation members are included inRi, elitism is ensured. Solutions belonging to the
best front,F1, are the best solution in the combined populationRi.

3. If the size ofF1 is smaller thann, all members of the setF1 are chosen for the
new populationPi+1. The remaining members of the populationPi+1 are chosen
from subsequent non-dominated fronts in the order of their ranking until no more
sets can be accommodated. IfFj is the last front from which individuals can be ac-
commodated in the population, but not all the members can enter in the population,
then a decision needs to be made to choose a subset of individuals fromFj . In order
to decide which members of this front will win a place in the new population, the
NSGA-II uses a selection criterion based on a crowded-comparison operator that
favors solutions located in less crowded regions.

In addition to the NSGA-II, an elitist non linear aggregation alternative was used. We
refer to this scheme as Aggregative MOEA. The PISA platform [2] was used to imple-
ment the strategies analyzed in this work.

2.2 Topic Ontologies and Semantic Similarity

Topic ontologies are means of classifying Web pages based on their content. In these
ontologies, topics are typically organized in a hierarchical scheme in such a way that
more specific topics are part of more general ones. In addition, it is possible to include
cross-references to link different topic in a non-hierarchical scheme. The ODP1 is the
largest human-edited directory of the Web. It classifies millions of pages into a topical
ontology combining a hierarchical and non-hierarchical scheme. This topical directory
can be used to measure semantic relationships among massive numbers of pairs of Web
pages or topics.

Semantic similarity between Web sites is a term used to describe the degree of
relatedness between the meanings of the Web sites, as it is perceived by human subjects.
Measures of semantic similarity based on taxonomies (trees) are well studied and the
most successful approaches estimate semantic similarity in a taxonomy based on the
notion of information content (e.g., [15]).

An important distinction between taxonomies and ontologies such as the ODP graph
is that edges in a taxonomy are all of the same type (“is-a” links), while in the ODP
graph edges can have diverse types (e.g., “is-a”, “symbolic”, “related”). In this work, we
take advantage of an information-theoretic measure proposed by Maguitman et al. [17]
to infer similarity from the structure of general ontologies, such as the ODP graph. In-
tuitively, the semantic similarity between two objects is related to their commonality
and to their differences. Given a set of objects in an ontology, the commonality of two
objects can be estimated by the extent to which they share information, indicated by

1 http://dmoz.org.



the most specific class that subsumes both. Once this common classification is identi-
fied, the meaning shared by two objects can be measured by the amount of information
needed to state the commonality of the two objects. The semantic similarity between
two topics is then measured as the ratio between their shared meaning and their indi-
vidual meanings. We omit a precise description of this semantic similarity measure due
to space constraints. Refer to [17] for a detailed introduction of the semantic similarity
measure used in this work.

The classification of Web pages into topics as well as the measures of semantic sim-
ilarity computed between topics can be usefully exploited to formulate topical queries
and assess their performance. In particular, these topical ontologies serve as a means to
identify relevant (and partially relevant) documents for each topic. Once these relevance
assessments are available, appropriate fitness functions that reflect different aspects of
query effectiveness can be implemented for the EA strategies.

3 Evolutionary Algorithm Strategies for Evolving Topical Queries

In order to run an EA for evolving topical queries we need to generate an initial pop-
ulation of queries. Each chromosome represents a query and each term corresponds to
a gene that can be manipulated by the genetic operators. The vector-space model is
used in this approach [1] and therefore each query is represented as a vector in term
space. The initial queries are formed with a fixed number of terms extracted from the
topic description available from the ODP. The training index is used to implement a
search interface and each query is rated according to the quality of the search results
when presented to this search interface. Following the classical steps of EAs, the best
queries have higher chances of being selected for subsequent generations and therefore
as generations pass, queries associated with improved search results will predominate.
Furthermore, the mating process continually combines these queries in new ways, gen-
erating ever more sophisticated solutions. Although all terms used to form the initial
population of queries are part of the topic description, novel terms extracted from rel-
evant documents can be included in the queries after mutation takes place. Mutation
consists in replacing a randomly selected query term by another term obtained from a
mutation pool. This pool initially contains terms extracted from the topic description
and is incrementally updated with new terms from the relevant documents recovered by
the system.

A new generation in our EAs is the result probabilistically selecting the most effec-
tive queries from the current set of queries. In the case when the query effectiveness can
be codified as a scalar value (single-objective or aggregative methods) then two queries
are chosen at random from the population and the one with highest effectiveness is se-
lected for recombination and to populate the next generations. This method is known
as 2-way tournament selection [10]. In addition, elitism is applied to prevent losing the
best queries. For NSGA-II, selection is based on the elitist Pareto strategy described in
section 2.1.

The recombination of a pair of parent queries into a pair of offspring queries is car-
ried out by copying selected terms from each parent into the descendants. The crossover
operator used in our proposal is known as single-point. It results in new queries in which



the firstn terms are contributed by one parent and the remaining terms by the second
parent, where the crossover pointn is chosen at random.

In order to determine if a query is effective, we first need to identify the set of
relevant documents for a given topict. Let Rt be the set containing all the documents
associated with the topict, including those in its subtopics. In addition, other topics in
the ontology could be semantically similar tot and hence the documents associated with
these topics are partially relevant tot. We useσS(t, topic(d)) to refer to the semantic
similarity between topict and the topic assigned to documentd. Additionally, we use
Aq to refer to the set of documents returned by our search engine using queryq as a
query, whileAq10 is the set of top-10 ranked documents returned for queryq. We use
the following performance measures to determine query effectiveness:

Semantic Precision at rank 10.The well-known measure of precision [1] is the frac-
tion of retrieved documents which are known to be relevant. The selection of a weight-
ing model for assigning scores to the retrieved documents typically influences document
ranking and query performance. For this purpose we have used a vector representation
of the query together with the TFIDF weighting function [1]. This retrieval configura-
tion will typically result in a large number of matches, sorted by their similarity to the
query vector. Therefore, rather than looking at precision, we take precision at rank 10,
which is computed as the fraction of the top 10 retrieved documents which are known
to be relevant. In addition, because other topics in the ontology could be semantically
similar (and therefore partially relevant) to the topic at hand we propose to use a mea-
sure of semantic precision at rank 10. For a queryq and a topict, this measure is defined
as follows:

PrecisionS@10(q, t) =
∑

d∈Aq10

σS(t, topic(d))/|Aq10|.

Recall.We adopt the traditional performance measure of recall [1] as a second criteria
for evaluating query effectiveness. For a queryq and a topict, recall is defined as the
fraction of relevant documentsRt that are in the answer setAq:

Recall(q, t) =
|Aq ∩ Rt|

|Rt|
.

Harmonic Mean. Finally we use a functionFS* that aggregatesPrecisionS@10and
Recallas follows:

FS*(q, t) =
2 · PrecisionS@10(q, t) · Recall(q, t)
PrecisionS@10(q, t) + Recall(q, t)

.

TheFS* is an adaptation of theF1 measure, which is the weighted harmonic mean of
precision and recall [24].

In this work we study the following EA strategies for evolving topical queries:

– Single-objective EAs implementingPrecisionS@10as its fitness function.
– Single-objective EAs implementingRecallas its fitness function.
– NSGA-II with PrecisionS@10andRecallas its fitness function.
– Aggregative MOEA based onFS* .



4 Evaluation

Our evaluations were run on 448 topic from the third level of the ODP hierarchy. For
each topic we collected all of its URLs as well as those in its subtopics. The language
of the topics used for the evaluation was restricted to English and only topics with at
least 100 URLs were considered. The total number of collected pages was more than
350K. We divided each topic in such a way that 2/3 of its pages were used to create a
training index and 1/3 to create a testing index. The Terrier framework [20] was used to
index these pages and to create a search engine. We used the stopword list provided by
Terrier and Porter stemming was performed on all terms. In addition we took advantage
of the ODP ontology structure to associate a semantic similarity measure to each pair
of topics. For each analyzed topic a population of 250 queries was randomly initialized
using the topic ODP description. The size of each query was a random number between
1 and 32. The crossover probability was set to 0.7 and the mutation probability was
0.03. The EAs were run for 300 generations.

4.1 Monitoring the Evolution of the EAs on the Training Set

In our first experimental setting, we run a single-objective EA with the purpose of
maximizingPrecisionS@10. The charts shown in figure 2 represent the evolution of
PrecisionS@10andRecallfor the ODP topicBusiness/IndustrialGoods-and Services/-
Machineryand Tools(MACHINERY AND TOOLS). In these figures we have plotted the
averagedPrecisionS@10 andRecall for the whole population (250 queries). As can
be observed, near-optimal queries were obtained after a small number of generations.
However, this was at the cost of very lowRecallvalues.
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Fig. 2. The evolution of PrecisionS@10 (left) and Recall (right) for the topic MACHIN-
ERY AND TOOLS when the objective to be maximized isPrecisionS@10.

Our second single-objective EA strategy attempted to maximizeRecall. As shown
in figure 3,PrecisionS@10behaves erratically for this case. Although these results are
shown for a single topic, analysis of the rest of the topics yielded similar behavior.

While increasing the level of one performance measure at the cost of reducing the
other is sometimes acceptable, we are typically interested in improving both measures.
Therefore, we run the NSGA-II algorithm to evolve topical queries that simultaneously
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Fig. 3. The evolution of PrecisionS@10 (left) and Recall (right) for the topic MACHIN-
ERY AND TOOLS when the objective to be maximized isRecall.

attempted to achieve high levels ofPrecisionS@10andRecall. The tables in figure 4
present the means and confidence intervals over 50 topics for the first and last gener-
ations based onFS* , PrecisionS@10andRecall. In addition they show the improve-
ment achieved by the NSGA-II algorithm when the performance of the first-generation
queries is compared to the evolved ones. These comparison tables show that the NSGA-
II algorithm achieved a significant query quality improvement throughout the succes-
sive generations. In other words, the algorithm was able to evolve queries with quality
considerably superior to that of the queries generated directly from the topic descrip-
tion.

AverageFS*

N mean 95% C.I. improvement
First Generation50 0.071 [0.065,0.076]
Last Generation50 0.704 [0.665,0.743] 892%

AveragePrecisionS@10

N mean 95% C.I. improvement
First Generation50 0.332 [0.321,0.342]
Last Generation50 0.942 [0.915,0.969] 184%

AverageRecall

N mean 95% C.I. improvement
First Generation50 0.044 [0.040,0.048]
Last Generation50 0.578 [0.533,0.624] 1208%

Fig. 4. First generation vs. last generation of queries evolved with NSGA-II: mean, confidence
intervals and improvement for average query quality based on 50 topics.

Finally, we monitored the evolution of the aggregative MOEA throughout the 300
generations. The tables in figure 5 summarize the statistics for the performance achieved
based on 50 topics. Once again, we observe that the analyzed strategy achieved a signif-
icant query quality improvement throughout the successive generations. In addition we
observe that the performance of the aggregative MOEA is similar to that of NSGA-II.
This allows us to conclude that for the objectives analyzed here the results of applying



AverageFS*

N mean 95% C.I. improvement
First Generation50 0.072 [0.066,0.077]
Last Generation50 0.713 [0.676,0.751] 896%

AveragePrecisionS@10

N mean 95% C.I. improvement
First Generation50 0.328 [0.318,0.339]
Last Generation50 0.947 [0.924,0.970] 188%

AverageRecall

N mean 95% C.I. improvement
First Generation50 0.045 [0.041,0.049]
Last Generation50 0.587 [0.544,0.630] 1214%

Fig. 5.First generation vs. last generation of queries evolved with the aggregative MOEA: mean,
confidence intervals and improvement for average query quality based on 50 topics.

an aggregative approach to rank and evolve queries are comparable to those obtained
by a non-aggregative, more computationally expensive approach.

4.2 Query Performance Evaluation on the Test Set

In order to determine if the evolved queries are effective when used on a new corpus
we computedFS* , PrecisionS@10andRecallfor each of the 50 topics on the test set.
The question addressed here is whether the evolved queries are superior to the baseline
queries (i.e., queries generated directly from the initial topic description).

The tables in figure 6 summarize the statistics for the 50 topics considered in our
evaluation showing that the effectiveness of the queries evolved by NSGA-II and the ag-
gregative MOEA result in statistically significant improvements over the baseline. The
charts presented on the right-hand side of the figure depict the query performance for
the individual topics. Each of the 50 topics corresponds to a trial and is represented by a
point. The point’s vertical coordinate (z) corresponds to the performance of the aggrega-
tive MOEA, while the point’s other two coordinates (x and y) correspond to NSGA-II
and the baseline. In addition we can observe the projection of each point on the x-y,
x-z and y-z planes. For the y-z plane, we can observe that all the points appear above
the diagonal, which means that for all the tested topics the aggregative MOEA method
is superior to the baseline. Similarly, for the x-y plane, we observe that NSGA-II out-
performs the baseline for all the tested cases. The x-z plane compares the performance
of NSGA-II against the aggregative MOEA. Note that different markers are used to il-
lustrate the cases in which each of the EA strategies performs better than the other: the
cases in which the aggregative method outperforms NSGA-II are represented by circles
while the cases in which NSGA-II outperforms the aggregative MOEA are represented
by triangles. This comparison allows us to conclude that NSGA-II and the aggregative
MOEA have similar performance on the test set and both strategies are able to evolve



queries with quality considerably superior to that of the queries generated directly from
the thematic context.

AverageFS*

mean 95% C.I. improvement
Baseline 0.074 [0.069,0.080]
NSGA-II 0.622 [0.584,0.660] 736%
Aggr. MOEA 0.644 [0.601,0.687] 762%

AveragePrecisionS@10

mean 95% C.I. improvement
Baseline 0.293 [0.283,0.303]
NSGA-II 0.714 [0.658,0.770] 144%
Aggr. MOEA 0.759 [0.699,0.819] 160%

AverageRecall

mean 95% C.I. improvement
Baseline 0.051 [0.046,0.055]
NSGA-II 0.580 [0.542,0.617] 1044%
Aggr. MOEA 0.584 [0.544,0.623] 1045%

Fig. 6.A comparison of the baseline, NSGA-II and the aggregative MOEA on the test set

5 Conclusions

This paper addresses the problem of evolving queries based on a thematic context. It an-
alyzes single- and multi-objective EA strategies that take advantage of a topic ontology
and measures of semantic similarity derived from this ontology to automatically op-
timize query performance. We noted that the single-objective EAs present limitations



that can be overcome by applying Pareto-based and aggregative techniques. We have
tested the best strategies on 50 different topics selected from ODP and observed that
the queries evolved from the training set can be effectively used on a new corpus. This
opens the possibility for developing topical retrieval systems that can be trained using
labeled documents and then used to retrieve topic-relevant material from the Web.

The techniques presented in this article are applicable to any domain for which it is
possible to generate term-based characterizations of a topic. In [4] we proposed to apply
single-objective genetic algorithms to evolve conjunctive queries. In that case we used
the Web as a corpus for training the algorithm and the optimization criteria were based
on the similarity of the retrieved material to the topic of interest. Other attempts to apply
EAs in information retrieval include the design of techniques to evolve better document
descriptions to aid indexing or clustering [11, 23], term-weight reinforcement in query
optimization [26, 22], and optimization of keywords and logical operators [19]. A re-
lated research area deals with the development of evolving agents that crawl the Web
to search for topical material [18]. A comprehensive literature review of Web-based
evolutionary algorithms can be found in [14]. Differently from most of the existing EA
proposals to document retrieval, which attempt to tune the weights of the individual
terms, our methods take each query as an individual. The proposed method is fully au-
tomatic as long as a training corpus is available and the objective functions have been
defined. A powerful aspect of this method is the use of a mutation pool containing new
candidate terms collected throughout the successive generations of queries.

As part of our future work we expect to apply genetic programming to evolve
queries with more complex syntaxes, including boolean operators and other special
commands. In addition, we plan to run additional experiments with other parameter
settings and to apply other objective functions coming from the information retrieval
and Web search communities as well as ad-hoc ones.
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