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Topic ontologies or Web Directories consist of large collections of links to websites, arranged
by topic in different categories. The structure of these ontologies is typically not flat, since
there are hierarchical and non-hierarchical relationships among topics. As a consequence,
websites classified under certain topic may be relevant to other topics. While some of these
relevance relations are explicit, most of them must be discovered by an analysis of the structure
of these ontologies. This paper proposes a family of models of relevance propagation in topic
ontologies. An efficient computational framework for inferring implicit relevance relations is
described. Nine different models were computed for a portion of the Open Directory Project
graph consisting of more than half a million nodes and approximately 1.5 million edges of
different types. The models were initially compared from a quantitative perspective, by con-
sidering the number of inferred relations. This allowed us to distinguish the more conservative
models from the less conservative ones, inducing a partial order on the set of models. A user
study was carried out to compare the most promising models. It is found that some general
difficulties rule out the possibility of defining flawless models of relevance propagation that
only take into account structural aspects of an ontology. However, there is a clear indication
that including transitive relations induced by the non-hierarchical components of the ontology
results in relevance propagation models that are superior to more basic approaches.

Keywords: relevance propagation, topic ontologies, seman-
tic similarity

Introduction
A topic ontology or Web Directory is a directory of web-

pages classified by topic into categories. Examples of these
ontologies are Yahoo! Directory1, Open Directory Project
(ODP)2, and their derivatives, such as Google Directory3.
While regular Web search is the most common way adopted
by users to find information on a specific topic, Web Directo-

Corresponding Author: Ana G. Maguitman. Departamento de
Ciencias e Ingenierı́a de la Computación, Universidad Nacional del
Sur, Av. Alem 1253, 8000 Bahı́a Blanca, Buenos Aires, Argentina.

This research work is partially supported by CONICET (PIP
11220090100863 and 11220090100560) and Universidad Nacional
del Sur (PGI 24/N029 and PGI 24/N026).

ries are particularly useful to navigate through related topics,
or when the user is not sure how to narrow her or his search
from a broad category. Topic ontologies can help understand
how topics within a specific area are related and may sug-
gest terms that are useful in conducting a search. Besides
being organized by topic, webpages classified in these on-
tologies have the advantages of having annotations (such as
a description) and having been evaluated by an editor. ODP,
for instance, has 20,000 volunteer editors reviewing websites
and classifying them by topic.

Although Web Directories were originally conceived as a
means to organize webpages to facilitate its navigation by
humans, the content and structure of these directories are
increasingly being used to serve other purposes. For in-
stance, Google’s regular Web search results are enhanced
by information from Google Directory. ODP has been used

1 http://dir.yahoo.com
2 http://dmoz.org
3 http://www.google.com/dirhp
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to train and test automatic classifiers (Biro, Benczur, Sz-
abo, & Maguitman, 2008; Gauch, Chandramouli, & Ran-
ganathan, 2009), as the starting point to collect thematic
material by topical crawlers (Chakrabarti, van den Berg, &
Dom, 1999; Menczer, Pant, & Srinivasan, 2004), as a frame-
work to understand the structure of content-based commu-
nities on the Web (Chakrabarti, Joshi, Punera, & Pennock,
2002), to implement information retrieval evaluation plat-
forms (Beitzel, Jensen, Chowdhury, & Grossman, 2003; Ma-
guitman, Cecchini, Lorenzetti, & Menczer, 2010), to under-
stand the evolution of communities in P2P search (Akavipat,
Wu, Menczer, & Maguitman, 2006), to define hierarchically-
informed keyword weight propagation schemes (Kim &
Candan, 2007) and to evaluate the emergent semantics of
social tagging (Markines et al., 2009), among other appli-
cations. Many of these applications rely on identifying rele-
vance or semantic similarity relationships between webpages
classified in ODP.

An initial analysis of the problem of defining the relevance
between documents classified in a topic ontology indicates
that it essentially involves the problem of identifying non-
obvious relationships from the ontology structure. Identi-
fying these relationships in topic ontologies is a challeng-
ing problem. The structure of ontologies is typically not flat
since concepts or topics can be classified according to some
taxonomic schema. Topic taxonomies contain parent-child
relationships between topics and their subtopics. However,
relationship that go beyond the parent-child hierarchies are
also common. For example, the ODP ontology is more com-
plex than a simple tree. Some topics have multiple criteria
to classify subtopics. The “Business” category, for instance,
is subdivided by types of organizations (cooperatives, small
businesses, major companies, etc.) as well as by areas (au-
tomotive, health care, telecom, etc.). Furthermore, ODP has
various types of cross-reference links between categories, so
that a node may have multiple parent nodes, and even cycles
are present.

The combination of different kinds of links gives rise to
intricate relations among topics. While some of these rela-
tions are explicitly given by the existing links, most of them
remain implicit. Currently, ODP contains more than one mil-
lion categories, making the problem of automatically deriv-
ing implicit relations between topics computationally very
hard.

It is possible to define different mechanisms to derive im-
plicit relevance relations, giving rise to multiple computa-
tional models of relevance propagation. Once relevance re-
lations are derived, other important concepts can be defined,
such as measures of similarity between topics (or between
documents) in an ontology, the degree of usefulness of a doc-
ument to a thematic context, or aboutness relationships be-
tween queries and topics. In particular, some widely adopted
information retrieval performance measures, such as preci-
sion and recall, are defined in terms of relevance.

The goal of this article is twofold: (1) to present a family
of computational models to efficiently derive implicit rele-
vance relationships among topics from the structure of topic
ontologies, and (2) to empirically evaluate these models, an-

alyze their limitations and discuss ways to overcome them.

Background
Traditionally, the notion of relevance has been studied in

the context of probability theory. In the first attempts to for-
malize relevance, such a notion was taken as equivalent to the
notion of conditional dependence and it was subsequently re-
fined mainly by J. M. Keynes (1921), R. Carnap (1950) and
P. Gärdenfors (1978) (cited in (Gärdenfors, 1978)). A for-
mal definition of relevance based on the use of a probability
measure can be defined as follows:

Definition 1 A formula α is relevant to a formula β given a
knowledge base K if and only if

PK (β|α) > PK (β) whenever PK (α) , 0,

where PK represents a probability measure given the knowl-
edge base K .
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….. …..

…..

Figure 1. Illustration of a portion of a Topic Taxonomy.

In principle, adapting this definition to determine if a topic
ti is relevant to a topic t j in a topic taxonomy T appears to
be straightforward. The reformulation of this definition, will
simply involve determining if the probability of classifying a
document under topic t j increases if we learn that the docu-
ment belongs to topic ti.

Definition 2 A topic ti is relevant to a topic t j given a topic
taxonomy T if and only if

PT (t j|ti) > PT (t j) whenever PT (ti) , 0,

where PT represents a probability measure given the topic
taxonomy T .

Given a topic taxonomy T , we can assume PT (t j) represents
the prior probability that any document is classified under
topic t j. In practice PT (t j) can be computed for every topic t j
in an “is-a” taxonomy by counting the fraction of documents



A STUDY OF RELEVANCE PROPAGATION IN LARGE TOPIC ONTOLOGIES 3

stored in node t j and its descendants out of all the documents
in the taxonomy. The conditional probability PT (t j|ti) rep-
resents the probability that any document is classified under
topic t j given that it is classified under ti, and is computed by
counting the fraction of documents stored in node t j and its
descendants out of all the documents stored in topic ti and its
descendants. In other words, PT (t j|ti) is the fraction of doc-
uments in the subtree rooted at ti that belong to the subtree
rooted at t j. For example, if the topic Bonsai and Suiseki is a
subtopic of the topic Gardens (see figure 1), then the prob-
ability of classifying d under the topic Bonsai and Suiseki is
higher if we know that d is classified under the more general
topic Gardens than if no evidence is given in advance.

TOP
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SCIENCE

T (taxonomy edge)
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R (related edge)

….. ….. …..
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Figure 2. Illustration of a Web Directory Graph extracted from
ODP.

A major limitation of definition 2 is that it is not directly
applicable to general topic ontologies, such as ODP, which
are more complex than a simple tree. Given a topic ontology
O, the main difficulty of applying this definition remains in
computing PO(t j) and PO(t j|ti), as it is insufficient to count
the number of documents stored in the subtrees rooted at ti
and t j to estimate these probabilities. To illustrate this issue,
take for example the topics Toys and Games and Puzzles in the
ontology of figure 2. Although there is a clear relevance re-
lation between these two topics, their corresponding subtrees
are independent.

In a general topic ontology, computing PO(t j|ti) would not
only involve recognizing if there is a “descendant” or “an-
cestor” relation between ti and t j. It would also involve de-
termining if knowing that a document is related to topic ti
would have an impact on determining whether the document
is about topic t j. In other words, we need to find out in the
first place whether ti is relevant to t j to compute PO(t j|ti).
Therefore, for the case of a general ontology, the traditional
definition of relevance relation becomes circular.

The above discussion points to the idea that defining these
probabilities in terms of relevance is more natural than defin-
ing relevance in terms of probability measures. From a cog-
nitive perspective, it is usually easier to grasp a relevance
relation than to estimate probability values. Moreover, even

if the probability values are given beforehand, it is possible
to arrive at a wrong conclusion due to “pure numerical acci-
dents” (R. von Mises (1963), cited in (Del Cerro & Herzig,
1996)).

To overcome the above mentioned difficulties, we will as-
sume that relevance is a primitive conceptual notion. This
notion, will not only capture the “is-a” relations derived from
a hierarchical ontology but it will also take into consideration
the non-hierarchical components. The extension of the no-
tion of relevance from taxonomies to ontology graphs raises
the question of how to extend the definition of subtree rooted
at a topic for the graph case.

A “bold approach” would formulate that ti is relevant to
t j if there is a directed path in the ontology graph from ti
to t j. However, as we will analyze later, this formulation
of topic relevance is inaccurate as the introduction of many
cross links in this path can lead to a loss of meaning. In
addition, allowing multiple cross links is infeasible because
it leads to a dense relevance relationship, i.e., every topic
becomes relevant to almost every other topic. This is also
not robust because a few unreliable cross links would make
significant global changes to such a relevance propagation
scheme. This paper will focus on analyzing strengths and
limitations of “more cautious” approaches to relevance prop-
agation.

Related Work
Relevance is a powerful concept employed in various sub-

disciplines within computer science, especially in artificial
intelligence and information science. This section reviews
different approaches to characterize and apply relevance,
and more specifically relevance propagation in the scope of
knowledge management, web mining and information re-
trieval.

The Study of Relevance as a Key Issue in Informa-
tion Science

There has been a diversity of efforts to study and charac-
terize the notion of relevance in information science. Most
research work centers on defining topical relevance, with
the ultimate purpose of formulating metrics for measuring
the effectiveness of information retrieval systems. An early
work (Goffman, 1964) defines relevance as a measure of the
information conveyed by a document relative to a query.

Although topicality has been the basis of relevance judge-
ments in most existing proposals (as is in the present article),
a number of studies have noted the inadequacy of topical-
ity as the only ingredient in relevance judgments. For in-
stance Rees and Saracevic (1966) argues that the definition
of relevance should take into account concepts such as the
information conveyed by a document, the previous knowl-
edge of the user and the usefulness of the information to the
user. Following this position, Barry (1994) highlights sev-
eral user-centered criteria that affect relevance judgements.
These criteria include the information content of the docu-
ment, the user’s previous knowledge, the user’s preferences,
other information and sources within the environment, the
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document sources, the document as a physical entity, and the
user’s situation. A more recent work (Xu & Chen, 2006)
discusses five factors affecting relevance: topicality, novelty,
reliability, understandability, and scope. After completing a
user study, the authors noted that topicality and novelty are
found to be the most important relevance criteria.

A more extensive review of existing literature on the con-
cept of relevance is out of the scope of this article. The
interested reader is referred to (Mizzaro, 1997), where an
overview of the history of relevance in the field of informa-
tion science from the 1930s to 1997 is given. More recent
reviews can be found in (Saracevic, 2007b, 2007a; Hjørland,
2010).

While the notion of relevance has been addressed by sev-
eral studies in information science, the notion of relevance
propagation has only been partially studied. Relevance prop-
agation becomes fundamental in the presence of intercon-
nected structures such as subgraphs of the Web, ontologies,
citation graphs and social networks in general. In particular,
the notion of relevance propagation is essential for comput-
ing semantic relations between nodes arranged in any kind
of network. The following sections review research work
addressing these issues.

Semantic Similarity in Ontologies
Although we maintain that the notion of relevance is more

primitive than the notion of semantic similarity and that the
latter can be defined in terms of the former, both notions are
often used interchangeably in the literature under the gen-
eral name of “semantic relation”. Some approaches aimed at
computing measures of semantic similarity between nodes
in an ontology take a network representation disregarding
the taxonomical structure of the ontology. Early propos-
als have used path distances between the nodes in the net-
work (e.g. (Rada, Mili, Bicknell, & Blettner, 1989)). These
frameworks are based on the premise that the stronger the
semantic relationship of two objects, the closer they will be
in the network representation. However, as it has been dis-
cussed by several authors, issues arise when attempting to
apply distance-based schemes for measuring object similari-
ties in certain classes of networks where links may not rep-
resent uniform distances (Resnik, 1995; Jiang & Conrath,
1998; Joslyn & Bruno, 2005). In addition, some authors have
argued against the suitability of relying on distance metrics
when computing similarity or relevance. This is mainly due
to the fact that some properties that should hold in a metric
space are not valid for measures of similarity or relevance.
Take for instance the triangle inequality, which is a defining
property of metric space. The triangle inequality implies that
if a is quite similar to b, and b is quite similar to c, then a and
c cannot be very dissimilar from each other. The following
example (based on William James, cited by (Tversky, 1977))
illustrates the inadequacy of this assumption: “Jamaica is
similar to Cuba (because of geographical proximity); Cuba
is similar to Russia (because of their political affinity); but
Jamaica and Russia are not similar at all.” This example
fits the case of webpages and their topics, suggesting that the

triangular inequality should not be accepted as a cornerstone
of similarity or relevance models.

Another problem associated with applying distance-based
approaches to compute relevance or similarity is that in hier-
archical ontologies, such as ODP, certain links connect very
dense and general categories while others connect more spe-
cific ones. To address this problem, some proposals estimate
semantic similarity in a taxonomy based on the notion of in-
formation content (Resnik, 1995; Lin, 1998). In these ap-
proaches, the meaning shared by two objects can be mea-
sured by the amount of information needed to state the com-
monality of the two objects. These proposals, however, are
limited to taxonomies and as a consequence do not address
the question of how to estimate relevance and semantic sim-
ilarity in generalized ontologies.

The general problem of computing semantic similarity in
general ontologies such as the ODP graph has first been ad-
dressed in (Maguitman, Menczer, Roinestad, & Vespignani,
2005). The measure of semantic similarity proposed there
takes advantage of both the ontology hierarchical (“is-a”
links) and non-hierarchical (cross links) components. How-
ever, a simplistic approach to relevance propagation was
taken, omitting a deep analysis of the notion of relevance
and focusing only on the notion of similarity.

Computational models of semantic similarity do not need
to be limited to topic ontologies and Web search. Identi-
fying relatedness relations in other ontologies requires ap-
propriate mechanisms to model different kinds of ontology
components and their interactions. For example, the Gene
Ontology4 has two kinds of hierarchical edges (“is-a” and
“part-of”). On the other hand, the WordNet ontology5 has
a much richer typology of relations. This includes seman-
tic relations between synsets (synonym sets) such as hyper-
nym, hyponym, meronym and holonym as well as lexical re-
lations between senses of words (members of synsets) such
as antonym, “also see”, derived forms and participle.

Relevance Propagation for Identifying Topical Au-
thoritative Sources

A variety of models of relevance propagation have been
applied for identifying authoritative sources in graph repre-
sentations of different domains, where graphs could repre-
sent a social network of experts, a portion of the Web, a ci-
tation network or any kind of interconnected collection of
documents.

In the field of expert finding, a model of relevance prop-
agation that relies on building an ad-hoc social network for
a given query is presented in (Rode, Serdyukov, Hiemstra,
& Zaragoza, 2007). The suggested framework propagates
relevance through the built network to identify authorities on
the required fields of expertise. A similar proposal is pre-
sented in (Serdyukov, Rode, & Hiemstra, 2008), where a
graph made of both document and expert nodes is used to
identify domain experts. This is accomplished by recogniz-

4 http://www.geneontology.org/
5 http://wordnet.princeton.edu/
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ing authoritative nodes by means of a relevance propagation
model.

Several approaches apply relevance propagation models to
identify topic-dependant authoritative webpages, a research
area known as topic distillation. For instance (Chibane &
Doan, 2007) uses a traditional model of information retrieval
based on content and link similarity to propagate relevance
through hyperlinks. In a similar way, (Bidoki, Ghodsnia,
Yazdani, & Oroumchian, 2010) proposes a content- and link-
based relevance propagation model, which is iteratively en-
riched by information from the user’s behavior. Another
scheme to compute the topical authoritativeness of a web-
page is presented in (Dai, Davison, & Wang, 2010). This
scheme uses the ODP to build a classifier for arbitrary web-
pages, giving rise to a new method for authority propagation
dependant on the topical relevance between the connected
pages.

An alternative topic distillation method that relies on both
content and link information is presented in (Shakery & Zhai,
2003) and subsequently refined in (Shakery & Zhai, 2006).
In the latter work, relevance propagation through links is
based on grouping neighbors into classes. A similar method
is presented in (Qin et al., 2007), where instead of limiting
the analysis to the hyperlinks of a web subgraph, the full
structure of the sitemaps involved in the subgraph is taken
into account.

Relevance Propagation in Ontologies
More closely related to our work are those frameworks

that attempt to propagate relevance across topic ontolo-
gies. A model of relevance propagation in topic ontologies
that takes document content into consideration is presented
in (Su, Gao, Yang, & Luo, 2005). In this work, an ontology
is built based on the notion of topical relevance. The result-
ing ontology is then used to guide a focused crawler. The
ontology iteratively evolves, based on a relevance function
that attempts to map the content of each discovered webpage
to a class in the ontology. Relevance propagation is carried
out by evolving the classes that are in the neighborhood of
those classes that have been updated.

Another model of relevance propagation in topic ontolo-
gies is presented in (Kim & Candan, 2007). This work pro-
poses a keyword propagation algorithm for augmenting the
description of the entries in a navigation hierarchy by adding
supplementary semantic information to the entries. In the
particular case of topic taxonomies, this information is de-
rived from the names and descriptions of the topics’ ances-
tors and descendants. The approach is then generalized in
such a way that keywords can be propagated across more
complex structures.

The above two propagation schemes relate to our ap-
proach in attempting to model relevance propagation through
topic ontologies. However, differently from our own frame-
work, these proposals propagate content (e.g., keywords or
keywords’ weights) between pairs of neighbor entries rather
than propagating relevance relations between topics across
an ontology. As will be seen in the Discussion section, we

contend that our proposal could be used to enhance content
propagation frameworks for topic ontologies as the ones re-
viewed in this section.

Representing the Structure of a
Web Directory Graph

A Web Directory Graph is a directed graph of nodes rep-
resenting topics. Each node contains objects representing
documents (webpages). A Web Directory Graph has a hi-
erarchical (tree) component made by “is-a” links, and non-
hierarchical components made by cross links of different
types.

For example, the ODP ontology is a directed graph G =
(V, E) where:
• V is a set of nodes, representing topics containing doc-

uments;
• E is a set of edges between nodes in V , partitioned into

three subsets T , S and R, such that:
• T corresponds to the hierarchical component of the ontol-
ogy,
• S corresponds to the non-hierarchical component made of
“symbolic” cross links,
• R corresponds to the non-hierarchical component made of
“related” cross links.

Figure 2 shows a simple example of a Web Directory
Graph extracted from ODP. In this graph, the set V con-
tains topic nodes such as Reference, Education, School Safety,
Labs and Experiments, etc. The subset T corresponding to the
hierarchical component of the Web Directory Graph contains
edges such as (Top,Reference), (Reference,Education), (Educa-
tion,School Safety), etc. In this example there is a “sym-
bolic” edge: (Science Fairs,Science) and two “related” edges:
(Labs and Experiments,Science Fairs) and (Science,Puzzles).

As a starting point, we say that topic ti is relevant to topic
t j if there is an edge of some type from topic ti to topic t j.
In the Web Directory Graph from figure 2, we can say that
the topic Education is relevant to the topic School Safety, or
that the topic Labs and Experiments is relevant to the topic Sci-
ence Fairs, among other examples.

However, to derive implicit (indirect) topic relevance rela-
tions, transitive relations between edges should also be con-
sidered. An analysis of some examples leads us to con-
clude that while relevance relations are consistently pre-
served through hierarchical links, it is necessary to impose
certain constraints on how the non-hierarchical links can
participate in the transitive relations. Allowing an arbi-
trary number of cross links is infeasible because it would
relate each topic to almost every other topic. Take for ex-
ample the portion of ODP shown in figure 2. In this ex-
ample there is a path involving three edges between topics
Reference/Education/School Safety/Labs and Experiments and
Games/Puzzles but the relevance of the first topic to the sec-
ond one is questionable. On the other hand, there are other
indirect paths that preserve relevance, as is the case for the
path of length three between Shopping/Toys and Games and
Games/Puzzles/Jigsaws.
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The question addressed here is: Can we automatically de-
rive non-obvious relevance relations among topics? Our goal
is to impose certain constraints on how cross links can par-
ticipate in each path in such a way that we capture the non-
hierarchical components of a Web Directory Graph while
preserving meaning.

In order to build our computational models of relevance
propagation we start by numbering the topics in V as t1, t2,
. . . , tn, and by representing the Web Directory Graph struc-
ture by means of adjacency matrices. Boolean matrices T,
S and R are used to codify the explicit relevance relations
as described next. The matrix T is used to represent the hi-
erarchical structure of an ontology. Matrix T codifies edges
in T and is defined as Ti j = 1 if (ti, t j) ∈ T and Ti j = 0
otherwise. The non-hierarchical components corresponding
to the “symbolic” and “related” edges of the ODP graph are
represented by matrices S and R, respectively. Matrix S is
defined so that Si j = 1 if (ti, t j) ∈ S and Si j = 0 otherwise.
The matrix R is defined analogously, as Ri j = 1 if (ti, t j) ∈ R
and Ri j = 0 otherwise.

Models of Relevance Propagation
Having codified the different components of the ODP

graph as matrices T, S and R, we proceed to address the
question of how these matrices can be used to capture the
notion of relevance. Before presenting the different models
of relevance propagation we review the notions of union and
composition of binary relations and how these operations can
be implemented as Boolean operations on matrices.

Boolean Operations on Matrices
We have already stated that relevance relations will be

codified as Boolean matrices. In order to effectively compute
new relations from existing ones, we have to take advantage
of the existing theory that connects operations on relations
with operations on matrices. In the following, we briefly re-
view these connections.
• Union of binary relations: Given binary relations ρA

and ρB the union ρA ∪ ρB can be computed as

A ∨ B,

where A and B are the matrix representations of ρA and ρB,
respectively. The Boolean addition operation ∨ on matrices
is defined as [A ∨ B]i j = Ai j ∨ Bi j.
• Composition of binary relations: Given binary rela-

tions ρA and ρB the composition ρA ◦ ρB can be computed
as

A ⊗ B,
where A and B are the matrix representations of ρA and ρB,
respectively. The Boolean product operation ⊗ on matrices
is defined as [A ⊗ B]i j =

∨
k(Aik ∧ Bk j).

A Model Induced by Explicit Relevance Relations
Consider the logical ∨ operation on matrices, and let M1

be computed as follows:

M1 = T ∨ S ∨ R ∨ I,

where I is the identity matrix. Matrix M1 is the adjacency
matrix of graph G augmented with 1s on the diagonal. While
matrix M1 accounts for all the explicit relevance relations ex-
isting in ODP it fails to capture many indirect relevance rela-
tions that result from applying transitive closures or combin-
ing relations of different types. Model M1 will be the most
conservative of the proposed models.

Models Induced by the Transitive Closure on the
Hierarchical Component

We use the Boolean product of matrices to recursively de-
fine T(r) as follows. Let T(0) = I, and let T(r+1) = T ⊗ T(r).

Matrix T(r) codifies all the paths of length r between top-
ics. We define the reflexive and transitive closure of T, de-
noted T∗, as follows:

T∗ =
∞∨

r=0

T(r)

Matrix T∗ codifies all the paths (of any length) existing be-
tween pairs of topics following “is-a” links. Since there is a
finite number of topics, matrix T∗ can be computed in a finite
number of steps. In this matrix, T∗i j = 1 if t j belongs to the
the topic subtree rooted at ti, and T∗i j = 0 otherwise.

Since we have observed that relevance relations are con-
sistently preserved through the “is-a” links it is reasonable
to compute the closure T∗ and augment it with the matrices
representing the “symbolic” and “related” links. This gives
rise to our second model of relevance propagation:

M2 = T∗ ∨ S ∨ R.

In this new model, topic ti is relevant to topic t j if (1) there
is a path from topic ti to topic t j involving “is-a” links only,
or (2) there is a “symbolic” or “related” link from topic ti to
topic t j. Model M2 is a conservative model in the sense that
it propagates relevance through the hierarchical component
of the ODP graph only, while the participation of cross links
is restricted to explicit (direct) relevance relations.

A question that arises next is whether cross links can be in-
cluded in indirect paths while preserving meaning. We have
observed earlier (figure 2) that relevance is often lost if an ar-
bitrary number of cross links are added to a path. Therefore,
for the relevance propagation models to be plausible certain
constraints should be imposed.

Below we formulate a family of plausible models of rele-
vance propagation, which result from extending the previous
models.

Models Induced by Propagating Cross Links
throughout the Taxonomy

A simple way to incorporate cross links into the model
is by propagating them upwards or downwards through the
taxonomy. If we want to propagate relevance relations in-
duced by cross links towards the root, we obtain the follow-
ing model of relevance:
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M3 = T∗ ⊗ (S ∨ R ∨ I).

Alternatively, if we propagate relevance relations induced
by cross links towards the leaves of the taxonomy we obtain
the following model:

M4 = (S ∨ R ∨ I) ⊗ T∗.

Finally, we can propagate relevance relations induced by
cross links throughout all the taxonomy, but allowing a single
cross link in each path. This results in the following model:

M5 = T∗ ⊗ (S ∨ R ∨ I) ⊗ T∗.

In a previous work, model M5 of relevance propagation has
been applied in the computation of semantic similarity mea-
sures with good results (Maguitman et al., 2005).

Another question that arises is whether relevance rela-
tions should be symmetric. The hierarchical component of
the ODP graph (i.e., “is-a” links) codifies relevance relations
from a parent topic to a child topic that in most of the cases
are non-symmetric. In the meantime, since duplication of
URLs is disallowed, “symbolic” links are a way to represent
multiple memberships, for example the fact that the pages
in topic Shopping/Toys and Games/Science also belong to topic
Science/Educational Resources/Science Fairs. Therefore, “sym-
bolic” links also codify parent-child relationships which, as
is the case with “is-a” links, are generally non-symmetric.
On the other hand, “related” links appear to codify symmet-
ric relevance relations. Consequently, a new model of rele-
vance can be formulated by making the “related” links bidi-
rectional. This is achieved by extending the set of cross-link
matrices with RT, i.e., the transpose of R, resulting in the
following model of relevance propagation:

M6 = T∗ ⊗ (S ∨ R ∨ RT ∨ I) ⊗ T∗.

Alternative models can be obtained by imposing addi-
tional constraints or by relaxing some. In general, “related”
links appear to be weaker than the other types of links. We
can reflect this in a new model that results from disallowing
the downward propagation of “related” links:

M7 = (T∗ ⊗ (S ∨ I) ⊗ T∗) ∨ (T∗ ⊗ (R ∨ RT ∨ I)).

A generalization of M7 is M8, where both “symbolic” and
“related” links are allowed to simultaneously participate in
the same path:

M8 = T∗ ⊗ (S ∨ I) ⊗ T∗ ⊗ (R ∨ RT ∨ I).

There is a plethora of ways in which these models can be
constrained or amplified. For example, we could allow up to
n “symbolic” links as is shown in the following generaliza-
tion of M8:

M9 = T∗ ⊗ (T ∨ S ∨ I)n ⊗ T∗ ⊗ (R ∨ RT ∨ I).

Figure 3 shows possible relevance paths from a source
to a target node according to the different models. Various
models have been considered, but the ones discussed above
capture the most interesting or salient aspects of the notion
of relevance propagation analyzed here.

Analyzing the Models

Quantitative Comparison
The proposed models were computed for the ODP ontol-

ogy. The portion of the ODP graph we have used for our
analysis consists of 571,148 topic nodes (only the World
and Regional categories were discarded). The following table
shows the size of the components of the graph used in our
analysis.

Component Size
V 571,148 nodes
T 571,147 edges
S 545,805 edges
R 380,264 edges

In order to quantitatively compare the different models,
we looked at the number of relevance relations between pairs
of topics induced by each model. This comparison is shown
in table 1.

The above comparison table reveals a wide variation in
the number of relevance relations induced by each model.
In addition, we computed the number of differences among
the models, and observed that for some pairs of models,
such as M6 and M9, the number of differences is as large
as 177,799,003.

Qualitative Analysis
Having observed that the models produced quantitatively

different characterizations of the notion of relevance, we pro-
ceeded to perform an analysis of the quality of the relations
induced by each.

An important theoretical observation is that the set of
models form a partial order under the relation “Mm ≤ Mn
if and only if [Mm]i j = 1 implies [Mn]i j = 1 for all i, j”. The
resulting partial order is depicted in figure 4 and can be easily
shown to hold by analyzing the definition of each model as
well as the definitions of the ∨ and ⊗ operators.6

M
1 

M
2 

M
3 

M
4 

M
5 

M
6 

M
7 

M
8 

M
9 

Figure 4. Partial order on the set of models.

6 Furthermore, this is consistent with the models computed using
the ODP graph.
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Figure 3. Possible paths from source node to target nodes in different models of relevance propagation.

Table 1
Quantitative comparison of the models.
Model Number of relations
M1 = T ∨ S ∨ R ∨ I 2,068,364
M2 = T∗ ∨ S ∨ R. 5,502,581
M3 = T∗ ⊗ (S ∨ R ∨ I) 7,072,930
M4 = (S ∨ R ∨ I) ⊗ T∗ 71,443,444
M5 = T∗ ⊗ (S ∨ R ∨ I) ⊗ T∗ 170,573,370
M6 = T∗ ⊗ (S ∨ R ∨ RT ∨ I) ⊗ T∗ 174,534,253
M7 = (T∗ ⊗ (S ∨ I) ⊗ T∗) ∨ (T∗ ⊗ (R ∨ RT ∨ I)) 14,177,359
M8 = T∗ ⊗ (S ∨ I) ⊗ T∗ ⊗ (R ∨ RT ∨ I) 16,915,322
M9 = T∗ ⊗ (T ∨ S ∨ I)n ⊗ T∗ ⊗ (R ∨ RT ∨ I) with n = 4 37,609,462

In order to dig deeper into the qualitative aspects of each
model, we implemented the visualization tool shown in fig-
ure 5. This tool was used in combination with the computed
matrices to identify cases in which models disagreed regard-
ing the existence or absence of a relevance relation between
pairs of topics. Once conflicting topics were identified in the
models, the visualization tool allowed us to visualize these
topics and the set of webpages associated with them. This
helped us to address the problem of which models produce
the most accurate characterization of the notion of relevance.

Relevance is a highly subjective concept (Burgin, 1992;
Bailey et al., 2008). After an initial pilot experiment
we observed low levels of agreement in relevance judge-
ments between the human evaluators. To further compli-
cate the task of evaluating the different models, we no-

ticed that even for the same judge a relevance relation that
existed at a certain point of time, may disappear later,
or vice versa. Despite these discrepancies, for a good
number of pairs of topics there was a clear agreement
concerning the existence or absence of an implicit rele-
vance relation. For example, in figure 2 the existence
of an implicit relevance relation between the topic Shop-
ping/Toys and Games and the topic Games/Puzzles/Jigzaw is un-
questionable, yet only models M5 and M6 capture this re-
lation. On the other hand, there is not a clear relevance re-
lation between the topics Society/Organizations/Students and
Arts/Art History/Movements/Impressionism in figure 6 despite
the facts that the less conservative models (M5, M6,M7,M8
and M9), would indicate the existence of such a relation.

Instances similar to the one illustrated in figure 6 are per-



A STUDY OF RELEVANCE PROPAGATION IN LARGE TOPIC ONTOLOGIES 9

Figure 5. Screenshot of the Visualization Tool developed to navigate the ODP hierarchical component.
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Figure 6. A questionable relation in ODP.

vasive in ODP. This highlights the fact that less conservative
schemes of relevance propagation are not robust because a
few unreliable cross links make significant global changes
to the relevance propagation models. On the other hand, the
most conservative schemes are incomplete, and hence unable
to derive many useful relevance relations induced by the less
conservative ones.

Validation by User Study
In order to evaluate the accuracy of some of the proposed

models, we carried out an experiment to compare two of the
most promising of them. The purpose of this experiment was
twofold:
• In the first place, to determine if one of the analyzed

models is more accurate than the other.
• Secondly, to highlight the importance of incorporating

relevance relations that go beyond the basic models.
This evaluation was carried out by performing a user study

that involved thirty two volunteer human subjects. Each par-
ticipant was shown a sequence of thirty triplets of websites
belonging to a main topic and two potentially related topics.
The selection of these topics is explained later in this section.
For every shown triplet, an image associated with the main
topic was presented on the top of the screen and two images
associated with the potentially related topics were presented
below. To avoid favoring one particular model, the two im-
ages were randomly displayed one at the left and the other at
the right side of the screen. Only the images of the selected
websites were shown, and no information about the corre-
sponding topics was given. The participants were given the
possibility of navigating the sites. For each shown triplet, the
users were asked to decide which of the candidate webpages
was more related to the main page, by selecting one of the
following options:
• The page on the left is more related than the page on the

right to the main page.
• The page on the right is more related than the page on

the left to the main page.
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• Both are equally related.
• Neither is related.
The language of the websites selected for the experiment

was restricted to English and therefore the participants were
required to have proficiency in this language. An example of
a question presented at the experiment is shown in figure 7.

Model Selection. The selection of the most promising
models was conducted by considering those ones that were
less conservatives, without reaching too bold models. The
goal was to highlight the transitive relations between topics,
avoiding too many steps that involved cross-reference
links, such as is the case in M9. Another important aspect
that was considered for the selection was that most of
the remaining models should be included in the selected
ones (e.g, M7 is contained in both M6 and M8, while M5
is contained in M6). The performed pilot study aided
the selection process, by leading to the identification
of useful relevance relations that were present in less
conservative models but absent in the most basic models.
Figures 8 and 9 illustrate examples of such relations.
For instance M6 induces a relevance relation between
the topics Science/Physics/Instruments And Supplies and Sci-
ence/Instruments And Supplies/Laboratory Equipment/Glass Pro-
ducts And Accesories. However, most of the proposed
models are unable to identify this relation. Similarly,
M8 infers a relevance relation between the topics
Business/Energy And Environment/Oil And Gas and Sci-
ence/Earth Sciences/Products And Services/Consulting, which
is not identified by the rest of the computed models.

TOP

SCIENCE

INSTRUMENTS

AND SUPPLIES

T (taxonomy edge)

S (symbolic edge)    

R (related edge)

PHYSICS

INSTRUMENTS

AND SUPPLIES

EDUCATIONAL

LABORATORY

EQUIPMENT

GLASS PRODUCTS

AND ACCESORIES

Figure 8. An example of a useful relation existing in M6 but absent
in the other analyzed models.

Taking into account the above considerations, the selected
models were:
• M6 = T∗ ⊗ (S ∨ R ∨ RT ∨ I) ⊗ T∗
• M8 = T∗ ⊗ (S ∨ I) ⊗ T∗ ⊗ (R ∨ RT ∨ I)

Setting up the Experiment. Once M6 and M8 were se-
lected as the most promising candidate models, the next task

TOP

BUSINESS SCIENCES

T (taxonomy edge)

S (symbolic edge)    

R (related edge)

…..

EARTH

SCIENCES
ENERGY AND

ENVIRONMENT

OIL AND

GAS

CONSULTING

GEOPHYSICS

PRODUCTS

AND SERVICES

CONSULTING

PRODUCTS

AND SERVICES

CONSULTING

Figure 9. An example of a useful relation existing in M8 but absent
in the other analyzed models.

was to isolate topic triplets (t1, t2, t3) that satisfy the following
conditions:
• The main topic t1 must have at least one related topic

according to M6 and another related topic according to M8.
• The topic t2 must be related to t1 according to M6 but

not according to M8.
• The topic t3 must be related to t1 according to M8 but

not according to M6.
An example of a triplet satisfying these conditions can be
seen in table 2.

Using matrix notation, the topic triplets (t1, t2, t3) are re-
quired to satisfy the following condition:

M6[t1, t2] ∧ ¬M8[t1, t2] ∧ ¬M6[t1, t3] ∧M8[t1, t3]. (1)

The first step for identifying these triplets was to isolate
those relations that were present in a model but not in the
other. This was done by applying the logical minus operator
on the models’ matrices as follows:
• Candidate relations from M6: M6 \M8 =M6 ∧ ¬M8.
• Candidate relations from M8: M8 \M6 =M8 ∧ ¬M6.
This allowed us to identify sets of candidate relations from

each model. The number of candidate relations in M6 \M8
was 159.926.121 (i.e. non-zero elements in the resulting ma-
trix), while the number of candidate relations in M8 \M6 was
2.307.190. The resulting candidate relation matrices allowed
us to isolate a sequence of triplets (t1, t2, t3) satisfying condi-
tion 1. This was accomplished by searching for row indices
t1 and column indices t2 and t3 such that both the (t1, t2)th

entry of M6 \ M8 and the (t1, t3)th entry of M8 \ M6 were
non-zero.

With the purpose of making the experiment more accu-
rate, we selected five main topics, each one associated with
six triplets, resulting in a total of thirty triplets. In this man-
ner, we also avoided an excessive load on the cognitive effort
of human-subjects who performed the experiment, given that
only after six triplets were shown they had to reassimilate the
main topic subject. This methodology was similar to the one
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Figure 7. An example of a triplet shown to users on the experiment.

adopted in (Maguitman et al., 2005). Besides, each triplet
was required to have active associated webpages, appropri-
ately representing the topics’ contents. Hence, the selection
of such triplets was not a trivial task due to various factors,
such as the disappearance of some websites during the de-
velopment of the experiment. A vital piece for the triplets
selection process was the visualization tool (figure 5) men-
tioned above, which allowed us to fast check the existence
and operation of websites associated with the selected topics.
Figure 7 depicts the triplet shown in table 2.

Results. The average time spent per user on per-
forming the experiment was approximately twenty
minutes. We obtained the number of answers for each
of the four possible options shown with every triplet.
Figure 10 shows these results grouped by user and
figure 11 shows the same results grouped by triplet.
The dataset used to carry out this experiment as well as
the individual answers given by each user is available at
http://ir.cs.uns.edu.ar/downloads/relevance propaga-

tion experiment dataset.xls.
Table 3 shows our first analysis grouping the answers by

user. From this analysis we can see that the confidence inter-

vals for the mean number of answers associated with M6 and
M8 do not overlap. At first sight, we could assume that this
analysis points M6 as a better relevance propagation scheme.
However, if we look at the overlapping of the confidence in-
tervals for the answers associated with each of the four op-
tions, we cannot say that there is a statistically significant dif-
ference. Thus, even when the means for M6 and M8 answers
are different, there is not a statistically significant difference
that justifies the choice of one model over the other, due to
the low significance of differences with the other answers.

If we only consider the existence or absence of a relation
on each answer according to the user criterion, the results are
quite different. We did this by grouping the answers that in-
dicate the existence of some relevance relation between the
main topic and any of the topics of the evaluated models,
for each user. These answers are the first three options on
each triplet: “The one on the left”, “The one on the right”,
and “Both are equally related”. Then, we calculated the per-
centage of answers that reflect the existence of a relevance
relation and compared it with the percentage of answers that
reflect no relation (i.e. the fourth option). This comparison is
shown in table 4. The chart illustrating the total percentages
of answers for each of the four options is shown in figure 12,
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Table 2
Example of a triplet used in the evaluation
Model URL Topic

Both http://www.idesam.umu.se/english/about/
subjects/archeology/?languageId=1

Science
Social Sciences
Archaeology
Topics

M6 http://www.hps.cam.ac.uk/starry/kepler.html Top
Science
Astronomy
History
People
Kepler, Johannes

M8 http://www.ualberta.ca/∼nlovell/index.html Top
Science
Social Sciences
Archaeology
Archaeologists
Bioarchaeologists
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Figure 10. Number of answers for each option per user.

while the chart with the totals for the grouped options ac-
cording to the second analysis is shown in figure 13.

These results indicate that there is a statistically significant
difference between the means of the two groups, given that
the confidence intervals do not overlap, with a significance
level of 5% (95% of confidence level). As a consequence,
we have enough statistical evidence to conclude that the rele-
vance relations determined by the evaluated models are con-
sistent in many cases according to the users’ criterion, and

can be taken into account for the computation of semantic
similarity between websites. In other words, the basic mod-
els are insufficient to reflect useful relevance relations that
could be contributed by some of the less conservative mod-
els.

Discussion
The above analysis leads us to conclude that while some

models are better predictors than others of the existence or
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Figure 11. Number of answers for each option per triplet.

Table 3
First analysis of the experiment data.
ANSWER N MEAN STDEV 95% CI
M6 32 28.65% 8.99% (25.53%,31.76%)
M8 32 20.31% 8.61% (17.33%,23.29%)
both 32 15.94% 8.71% (12.92%,18.95%)
neither 32 35.10% 12.64% (30.72%,39,48%)

28.65%

20.31%
15.94%

35.10%

M_8

M_6

Both

Neither

Figure 12. Percentage of answers for each option.

absence of relevance relations, none of them is flawless. This
points to the fact that despite being a key concept in artificial
intelligence and information science, relevance is a fuzzy and
subtle notion, difficult, if not impossible, to formalize using
structural aspects only.

Despite these limitations, our analysis indicates that there
is a clear increase in the amount of useful information in-
ferred when the less conservative models (such as M6 or M8)
are used to identify implicit relevance relations. This analysis
provides new insight into the problem of computing seman-
tic similarity measures for general ontologies, highlighting
the benefits of taking advantage of both the hierarchical and
non-hierarchical components of these ontologies.

As it has been proposed in (Maguitman et al., 2005), the
semantic similarity between two topics ti and t j in an ontol-
ogy graph can be computed using an information-theoretic
approach as follows:

σG(ti, t j) = max
k

2 · (M[tk, ti] ∧M[tk, t j]) · log PO(tk)
log(PO(ti|tk)·PO(tk)) + log(PO(t j|tk)·PO(tk))

.
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Table 4
Second analysis of the experiment data.
ANSWER N MEAN STDEV 95% CI
related (M6, M8 or both) 32 64.90% 12.64% (60.52%,69.28%)
not related (neither) 32 35.10% 12.64% (30.72%,39,48%)

64.90%

35.10%

Existence of a

relation

Absence of a

relation

Figure 13. Percentage of answers comparing the existence of a
relevance relation (coming from M6, M8 or both) with the non ex-
istence of a relevance relation.

The probability PO(tk) represents the prior probability that
any document is classified under topic tk. Once a model of
relevance propagation M has been computed, PO(tk) can be
naturally estimated in terms of model M as:

PO(tk) =

∑
t j∈V (M[tk, t j] · |t j|)

|U | , (2)

where |t j| is the number of documents directly associated
with topic t j and |U | is the total number of documents in the
ontology. The conditional probability PO(ti|tk) represents the
probability that any document will be classified under topic ti
given that it is classified under tk, and it can also be estimated
in terms of model M as follows:

PO(ti|tk) =

∑
t j∈V ((M[ti, t j] ∧M[tk, t j]) · |t j|)∑

t j∈V (M[tk, t j] · |t j|)
. (3)

Equations 2 and 3 are in accordance with the arguments pre-
sented in the Background section, where we claim that rele-
vance is a primitive conceptual notion and suggest that defin-
ing PO(t j) and PO(t j|ti) in terms of relevance is more natural
than defining relevance in terms of these probability mea-
sures.

There are a number of ways in which the proposed mod-
els of relevance propagation can be improved. For instance,
the less conservative models could be combined with mech-
anisms that prevent them from deriving relevance relations

between two topics unless an analysis of the topics’ content
suggests a connection between them. This analysis could be
based on the text describing the topics, which is available in
ODP. Another source of content are the features of the web-
sites associated with the topics, such as the text, the outgoing
links, the incoming links or a combination of all.

Another possible improvement is the extension of the pro-
posed models to fuzzy models of relevance propagation. Dif-
ferent types of edges have different roles, and one way to
distinguish these roles is to assign them weights. Then, the
weight wi j ∈ [0, 1] for an edge between topic ti and t j can
be interpreted as an explicit measure of the degree of mem-
bership of t j in the family of topics rooted at ti. In order
to propagate relevance, the Boolean product of matrices ⊗
will need to be replaced by some fuzzy operator. For exam-
ple, we could use the MaxProduct fuzzy composition opera-
tor (Kandel, 1986) defined on matrices as follows:

[A ⊙ B]i j = max
k

(Aik · Bk j).

The element M[ti, t j] resulting from propagating relevance in
the new fuzzy models will be interpreted as a fuzzy relevance
relation of topic ti to topic t j. For certain weighting schemes,
the distance between two topics in the directory will have an
impact on their relevance value.

Finally, it is important to distinguish the propagation of
relevance relations from the propagation of keywords (and
keywords’ weights) through a topical structure. Two ap-
proaches for keyword propagation (Su et al., 2005; Kim &
Candan, 2007) were reviewed in the Related Work section.
In these approaches, keywords are propagated through top-
ics following the hierarchical component of a topic direc-
tory or to neighbor topics. We contend that the propagation
mechanism could be extended guided by our models of rel-
evance propagation. In other words, more complex propa-
gation schemes can be implemented if content is propagated
from topic ti to topic t j whenever M[ti, t j] , 0 for a given
model M.

Conclusions
This paper addressed the problem of inferring relevance

relations between topics in a Web Directory Graph by look-
ing at structural features of the graph only. We proposed
nine different models of relevance propagation and computed
them for a huge graph consisting of more than half a million
nodes. This resulted in a challenging computational task, for
which we implemented dedicated efficient algorithms. The
resulting models were compared from both a quantitative and
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qualitative perspective. In addition, a user study was carried
out to compare two of the most promising models.

While some models appear to better approximate the no-
tion of relevance than others, certain general difficulties ap-
pear to rule out the possibility of defining precise models of
relevance propagation by considering structural aspects only.
This result has interesting practical and theoretical conse-
quences as many existing methods attempt to identify im-
plicit semantic relations in network representations by look-
ing only at the structure or topology of the network (e.g.,
(Pedersen, Patwardhan, & Michelizzi, 2004; Rada et al.,
1989)). This calls for the investigation and development of
mechanisms that integrate structural aspects with other as-
pects (such as content or other contextual aspects) to derive
enhanced models of relevance propagation.

In this sense, structure and content analysis can be use-
fully integrated in two ways. Firstly, the proposed struc-
tural models of relevance propagation can be enhanced by
taking content into consideration. Secondly, existing models
of content propagation such as the ones proposed in (Su et
al., 2005; Kim & Candan, 2007) (discussed in the Related
Work section) can be reformulated to propagate keywords
and their weights through new paths induced by the models
of relevance propagation.

To the authors’ knowledge, this is the first attempt to
model the problem propagating relevance relations in a Web
Directory Graph. The applicability of the proposed models
of relevance propagation to the area of artificial intelligence
and information science is extensive and multifarious. Since
much of a reasoner’s knowledge can be expressed in terms
of relevance relations, a computational model of relevance
propagation is a useful tool for the design of common-sense
reasoning and information seeking systems.
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