
System Architecture for Trust-Based News
Recommenders on the Web

Cristian E. Briguez1,2, Fernando M. Sagui1,2,
Marcela Capobianco1,2, and Ana G. Maguitman1,2

1 Laboratorio de Investigación y Desarrollo en Inteligencia Artificial
Departamento de Ciencias e Ingenieŕıa de la Computación

Universidad Nacional del Sur, Av. Alem 1253, (B8000CPB) Bah́ıa Blanca, Argentina
{ceb, fms, mc, agm}@cs.uns.edu.ar

2 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)

Abstract. A fundamental challenge in personalized news recommenda-
tion is to account for the notion of trust. In this work we show how
the notion of trust can be qualitatively modeled and incorporated into
the architecture of a news recommendation system. The proposed sys-
tem enables users to express explicit trust statements on news reports,
news sources and other users. Trust is modeled and propagated using
a dialectical process supported by a defeasible logic programming inter-
preter. We illustrate the operation of the system with some illustrative
examples, describe the system architecture and discuss future steps.

Keywords: argumentation, news recommender systems, trust manage-
ment

1 Introduction

We frequently seek suggestions from people we trust for deciding the best place
to acquire some service or the best source to obtain information about certain
topic. Suggestions of people we trust may also help decide who else to trust.
The Web offers new opportunities to create recommendation services based on
trust. In particular, news management systems on the Web can take advantage
of the large community of readers to rank news, determine the reputation of
an information source or propagate trust among users. This can help decide
which news are more interesting or trustworthy to certain user, providing more
personalized services.

The dynamics of news credibility has mainly been studied through quanti-
tative approaches (e.g. [8]). However, a purely quantitative perspective to news
credibility has several limitations. In particular, quantitative approaches make
it hard to provide readers with a justification of why certain news should be
trusted, or might been unable to deal with subtle notions such as distrust or
trust repair.

A more appealing approach would consist in combining quantitative and
qualitative criteria to filter and rank news. In this sense, quantitative methods
can help determine if the news topic is relevant to the user’s interest, while

qualitative criteria could help decide whether the news comes from a reliable
source. For example, a qualitative approach is more natural to deal with some
properties of trust such as being context dependent, subjective, asymmetrical,
dynamic and not always transitive.

This paper extends previous work on recommendation technologies presented
in [3] by describing the architecture of a Trust-Based Recommendation system
for web news and its implemented components. A key ingredient of the pro-
posed architecture is the propagation of trust based on inference mechanisms.
In particular, a defeasible logic programming interpreter is used to manage in-
terpersonal trust and distrust. We demonstrate the use of the tool with a set of
illustrative examples.

2 Background

2.1 Recommendation systems and trust

Recommendation systems are support mechanisms that assist users in their
decision-making process while interacting with large or complex information
spaces. They attempt to generate a model of the user or user’s task and ap-
ply diverse heuristics to anticipate what information may be of interest to the
user. In order to come up with recommendations, conventional recommender
systems rely on similarity measures between users or contents, computed on the
basis of methods coming either from the information retrieval or the machine
learning communities. Recommender systems adopt mainly two different views
to help predict information needs. The first approach is known as user modeling
and relies on the use of a profile or model of the users, which can be created
by observing users’ behavior (e.g., [7]). The second approach is based on task
modeling, where recommendations are based on the context in which the user
is immersed (e.g., [1]). The context may consist of an electronic document the
user is editing, web pages the user has recently visited, etc.

Two main techniques have been used to compute recommendations: content-
based and collaborative filtering. Content-based recommenders [10] are driven by
the premise that user’s preferences tend to persist through time. These recom-
menders frequently use machine-learning techniques to generate a profile of the
active user, typically stored as a list of rated items. In order to determine if a new
item is a potentially good recommendation, content-based recommender systems
rely on similarity measures between the new items and the rated items stored
as part of the user model. On the other hand, recommender systems based on
collaborative filtering [12] are based on the assumption that users’ preferences
are correlated. These systems maintain a pool of users’ profiles associated with
items that the users rated in the past. For a given active user, collaborative
recommender systems find other similar users whose ratings strongly correlate
with the current user. New items not rated by the active user can be presented
as suggestions if similar users have rated them highly.

Trust is a fundamental concept in human behavior, which for many years has
enabled collaboration. Therefore, trust is an important aspect in the implemen-

tation of recommendation systems. Typically, the notion of trust is defined in
terms of two components: trusting intentions and trusting beliefs. For example,
a user can trust the intentions of a vendor or the intentions of a service or infor-
mation provider. On the other hand, a user can trust the beliefs of other users.
Trust models have been applied in a number of areas, such as E-commerce [9],
Social Networks [13] and P2P systems [4]. Many proposals have addressed the
notion of trust from a formal perspective [2] while others take a more empirical
approach [6].

2.2 Defeasible logic programming

Defeasible logic programming (DeLP) [5] is a general-purpose defeasible argu-
mentation formalism based on logic programming, intended to model inconsis-
tent and potentially contradictory knowledge. This formalism provides a knowl-
edge representation language which gives the possibility of representing tentative
information in a declarative manner, and a reasoning mechanism with considers
all ways a conclusion could be supported and decides which one has the best
support. A defeasible logic program has the form P = (Π,∆), where Π and ∆
stand for strict and defeasible knowledge, respectively. The set Π involves strict
rules of the form P ← Q1, . . . , Qk and facts (strict rules with empty body),
and it is assumed to be noncontradictory (i.e., no complementary literals P and
∼P can be inferred, where ∼P denotes the contrary of P). The set ∆ involves
defeasible rules of the form P −−≺ Q1, . . . , Qk, which stand for “Q1,. . .Qk provide
a tentative reason to believe P.” Rules in DeLP are defined in terms of literals.
A literal is an atom A or the strict negation (∼A) of an atom. Default negation
(denoted not A) is also allowed in the body of defeasible rules (see [5] for details).

Deriving literals in DeLP results in the construction of arguments. An ar-
gument A for a literal Q (denoted 〈A,Q〉) is a (possibly empty) set of ground
defeasible rules that together with the set ∆ provide a proof for a given literal
Q, satisfying the additional constraints of noncontradiction (i.e., an argument
should not allow the derivation of contradictory literals) and minimality (i.e.,
the set of defeasible information used to derive Q should be minimal). Note that
arguments are obtained by a mechanism similar to the usual query-driven sld
derivation from logic programming, performed by backward chaining on both
strict and defeasible rules; in this context a negated literal ∼P is treated just
as a new predicate name no P . In DeLP, arguments provide tentative support
for claims (literals). Clearly, as a program P represents incomplete and tenta-
tive information, an argument 〈A,Q〉 may be attacked by other arguments also
derivable from P. An argument 〈B,R〉 is a counter-argument for 〈A,Q〉 when-
ever a subargument 〈A’,Q’ 〉 (with A’ ⊆ A) in 〈A,Q〉 can be identified, such that
〈B,R〉 and 〈A’,Q’ 〉 cannot be simultaneously accepted since their joint accep-
tance would allow contradictory conclusions to be inferred from Π ∪ A’ ∪ B.
If the attacking argument 〈B,R〉 is preferred over 〈A’,Q’ 〉, then 〈B,R〉 is called
a defeater for 〈A,Q〉. The preference criterion commonly used is specificity [5],
preferring those arguments which are more direct or more informed, although
other criteria could be adopted.

In DeLP the search for defeaters for a given argument 〈A,Q〉 prompts a re-
cursive process, resulting in the generation of a dialectical tree: the root node of
this tree is the original argument at issue, and every children node in the tree is
a defeater for its parent. Additional restrictions help to avoid circular situations
when computing branches in a dialectical tree, guaranteeing that every dialecti-
cal tree is finite (see [5] for details). Nodes in the tree can be marked either as
defeated (D-nodes) or as undefeated (U -nodes). The marking of the dialectical
tree is performed as in an and-or trees: leaves are always marked as unde-
feated nodes (as they have no defeaters); inner nodes can be be marked either
as undefeated (if and only if every of its children nodes is marked as defeated)
or as defeated (whenever at least one of its children has been marked as unde-
feated). The original argument 〈A,Q〉 (the root of tree) is deemed as ultimately
acceptable or warranted whenever it turns out to be marked as undefeated after
applying the above process.

Note also that the computation of the dialectical tree is performed automati-
cally by the DeLP interpreter on the basis of the program available. This process
is based on an abstract machine which extends Warren’s abstract machine for
Prolog[5]. Given a DeLP program P, solving a query Q with respect to P may
result in four possible answers: yes (there is at least one warranted argument
A for Q); no (there is at least one warranted argument A for ∼Q); undecided
(none of the previous cases hold); and unknown (Q is not present in the pro-
gram signature). The emerging semantics is skeptical, computed by DeLP on the
basis of the goal-directed construction and marking of dialectical trees, which
is performed in a depthfirst fashion. Additional facilities (such as visualization
of dialectical trees, zoom-in/zoom-out view of arguments, etc.) are integrated in
the DeLP environment to facilitate user interaction when solving queries.

3 The proposed news recommendation system

In this paper we present a practical implementation of a trust model for news rec-
ommendation and analyze how it behaves in real life applications. Our proposal
takes as a starting point a set of postulates for trust previously reported in [11]
and shows how to incorporate them into the architecture of a recommender.
Simply put, our system deals with three different entities: viewers, reports and
sources.

A news article or report is a written communication of a news event prepared
by a specific news agency (source). When a report is made available on the Web,
we can identify fields such as title, source, timestamp, description, category and
link to news content. Other information related to the report such as author can
also be derived in certain situations.

The source of a news article is the agency in charge of supplying the report
to be used by the media. News can also be published by social networks, web
pages or blogs.

A viewer is a user of the news service. The system maintains a pool of
viewers. Viewers can also provide trust statements about reports, sources and
other viewers.

We have identified a fundamental relation among these entities, needed to
model the concept of trust, which we have called Trust/Distrust Statements.
A trust (distrust) statement is an explicit assertion of the fact that a viewer
trusts (distrusts) a report, a source or another viewer. These statements allow
to infer implicit trust relations, which are useful to provide recommendations to
the viewer based on trust.

3.1 Using DeLP to model news trust

We will use the following set of postulates (previously developed in [11]) to model
the notion of trust among users, news reports and news sources in an intuitive
way.

Postulate 1. A report coming from a trusted source will typically be trusted.
Postulate 2. A report coming from a distrusted source will typically be dis-

trusted.
Postulate 3. A report trusted by a trusted viewer will typically be trusted.
Postulate 4. A report distrusted by a trusted viewer will typically be dis-

trusted.
Postulate 5. A source trusted by a trusted viewer will typically be trusted.
Postulate 6. A source distrusted by a trusted viewer will typically be dis-

trusted.
Postulate 7. A report coming from a trusted source will typically be trusted,

even if it is distrusted by a trusted viewer.
Postulate 8. A report coming from a distrusted source will typically be dis-

trusted, even if it is trusted by a trusted viewer.

These postulates can be translated into the following DeLP rules:

trust report(V, R) −−≺ report source(R, S), trust source(V, S)
∼trust report(V, R) −−≺ report source(R, S),∼trust source(V, S)

trust report(V, R) −−≺ trust viewer(V, V1), trust report(V1, R)
∼trust report(V, R) −−≺ trust viewer(V, V1),∼trust report(V1, R)

trust source(V, S) −−≺ trust viewer(V, V1), trust source(V1, S)
∼trust source(V, S) −−≺ trust viewer(V, V1),∼trust source(V1, S)

trust report(V, R) −−≺ report source(R, S), trust source(V, S),
trust viewer(V, V1),∼trust report(V1, R)

∼trust report(V, R) −−≺ report source(R, S),∼trust source(V, S),
trust viewer(V, V1), trust report(V1, R)

3.2 System architecture

Based on the model presented before, we have implemented a novel system
for news recommendations, based on a particular architecture that we describe
next. We have chosen to use a client-server style architecture, given that it can
accommodate our requirements in a natural way. Figure 1 depicts the main
components of the system.

View Controller

Model

TRUST
MANAGER

DeLP

NEWS
RETRIEVER

DB Database

Database Communication
and Interfaces

Service Communication

Services A Prolog FEEDS
SOCIAL

NETWORKS … ...

N
ew

s
R

ec
o

m
m

e
n

d
er

Sy

st
em

Fig. 1. Proposed architectural pattern for a news recommendation system.

At this point, we work with two different types of services. The first one
provides news that were obtained from the available sources. The second one
deals with news trust. This service must be able to decide if a certain news
could be trustworthy for the current logged in user. So far, we have focused on
the implementation of the second service, using a DeLP interpreter. Note that
even tough the trust manager is currently implemented using DeLP, the system
is designed to allow a seamless transition to a different system, given that it was
built taking into account modularity as a fundamental design principle.

The recommender system was implemented as a web application, because
web applications can be easily accessed from any computer or location equipped
with a browser and Internet access (accessibility and portability). Most of the
work is done on the server, resulting in low resource consumption and giving the
application independence from operating system to avoid compatibility problems
(efficiency and multi-platform). Also the ability to update and maintain web ap-
plications without distributing and installing software on potentially thousands
of client computers is a key reason for the popularity of web based applications.

The language chosen for development is PHP3, which is a relatively new lan-
guage designed for the sole purpose of creating web applications. This means that
the most common tasks in developing these applications can be easily, quickly
and effectively accomplished by using PHP. In addition, it is a multi-platform
and non-proprietary language. A normal PHP script can be executed without
changing a single line of code on any server with a PHP interpreter, i.e. Windows,
Linux etc. More precisely, we have used a generic web programming PHP frame-
work named Yii4 for this development. Yii is an open source high-performance,
component-based PHP framework for developing web applications rapidly, and

3 http://www.php.net/
4 http://www.yiiframework.com/

like most PHP frameworks Yii is a Model View Controller (MVC) framework.
As an integrated development environment (IDE) we use NetBeans,5 because it
offers a version of the IDE specifically created for developing PHP web sites that
comprises a variety of scripting and mark-up languages. Taking advantage of Net-
Beans IDE’s support for version control and the service provided by Google code
we keep our source code online at http://code.google.com/p/newsrecomender/.

4 Some selected examples

As we have said before, to represent our notion of trust we rely on the eight
postulates presented in section 3.1. The implementation of the trust manager
system requires translating these postulates into DeLP rules.

In order to determine if a report is trusted, distrusted or undecided the
system takes as a basis the information stored in the database about users, news
sources, news reports and trust judgements. This information is translated into
DeLP facts, which are added to the proposed postulates to complete the trust
model. Once this is done, the service is able to automatically determine which
reports can be trusted by a particular user.

Suppose that Ana is a user who has logged into the system and has already
expressed her trust judgements about other users and various news sources and
reports. Let “google hits one billion” be a news report informing that Google
received 1 billion of unique visitors during May 2011. Suppose that after being
translated into DeLP facts, the system’s trust information is represented by the
following facts:

report source(google hits one billon, slashdot)
report source(facebook hits one billon, etc news)
report source(microsoft hits one billon,msn news)
trust source(ana, slashdot)
∼trust source(cristian, etc news)
∼trust report(marcela, google hits one billon)
trust report(marcela, facebook hits one billon)
∼trust report(marcela,microsoft hits one billon)
trust report(cristian,microsoft hits one billon)
trust viewer(ana, emanuel)
trust viewer(ana, cristian)
trust viewer(emanuel ,marcela)

Based on this and the eight postulates described earlier, the system is able
to classify reports as trusted, distrusted or undecided and use this informa-
tion at the moment of presenting suggestions to the user. In this case, suppose
that the system needs to classify the reports “google hits one billion”, “face-
book hits one billon” and “microsoft hits one billon”.

In order to decide how to classify each report, the system internally tries
to find a warranted argument associated with trust judgements about each of
them. In figure 2 we can see that there is a warranted argument supporting
the statement trust report(ana, google hits one billon), so the report should be

5 http://netbeans.org/

trusted by Ana. In figure 3 we can see the existence of a warranted argument for
∼trust report(ana, facebook hits one billon), so this report should be distrusted
by Ana. Finally, figure 4 shows that the report cannot be trusted, because there
is not a warranted argument for trust report(ana,microsoft hits one billon). In
addition, the system cannot conclude that Ana should distrust this report be-
cause it is not possible to find a warranted argument for
∼trust report(ana,microsoft hits one billon). Therefore, the trust status of this
report stands as undecided. With these examples we can see how trust is spread
among users and what possible scenarios are possible for the epistemic status of
a user regarding a specific report.

trust_report(ana, google_hits_one_billon)

report_source(google_hits_one_billon,slashdot) , trust_source(ana, slashdot)

U

~trust_report(ana, google_hits_one_billon)

trust_viewer(ana,emanuel) , ~trust_report(emanuel, google_hits_one_billon)

D

U

trust_viewer(emanuel,marcela) , ~trust_report(marcela, google_hits_one_billon)

trust_report(ana, google_hits_one_billon)

report_source(google_hits_one_billon,slashdot), trust_source(ana,slashdot),
trust_viewer(ana,emanuel), ~trust_report(emanuel, google_hits_one_billon)

trust_viewer(emanuel,marcela) , ~trust_report(marcela, google_hits_one_billon)

U

D

Undefeated

Argument

Defeated

Argument

Proper Attack

Blocking Attack

Strict Rule

Defeasible Rule

Fig. 2. DeLP dialectical tree showing the reasons to trust google hits one billon.

trust_report(ana, facebook_hits_one_billon)

trust_viewer(ana,emanuel) ,
trust_report(emanuel, facebook_hits_one_billon)

D

U

trust_viewer(emanuel,marcela) ,
trust_report(marcela, facebook_hits_one_billon)

~trust_report(ana, facebook_hits_one_billon)

report_source(facebook_hits_one_billon,etc_news),
~trust_source(ana,etc_news)

trust_viewer(ana,cristian) , ~trust_source(cristian, etc_news)

~trust_report(ana, facebook_hits_one_billon)

report_source(facebook_hits_one_billon,etc_news) ,
~trust_source(ana, etc_news)

U

trust_report(ana, facebook_hits_one_billon)

trust_viewer(ana,emanuel) ,trust_report(emanuel,facebook_hits_one_billon)

D

U

trust_viewer(emanuel,marcela) ,
trust_report(marcela, facebook_hits_one_billon)

~trust_report(ana, facebook_hits_one_billon)

report_source(facebook_hits_one_billon,etc_news),
~trust_source(ana,etc_news), trust_viewer(ana,emanuel),

trust_report(emanuel, facebook_hits_one_billon)

trust_viewer(emanuel,marcela) ,
trust_report(marcela, facebook_hits_one_billon)

trust_viewer(ana.cristian) , ~trust_source(cristian, etc_news)

trust_viewer(ana,cristian) , ~trust_source(cristian,etc_news)

Fig. 3. DeLP dialectical tree showing the reasons to distrust facebook hits one billon.

trust_report(ana, microsoft_hits_one_billon)

trust_viewer(ana,cristian) ,
trust_report(cristian, microsoft_hits_one_billon)

D

U
~trust_report(ana, microsoft_hits_one_billon)

trust_viewer(ana,emanuel),
~trust_report(emanuel, microsoft_hits_one_billon)

trust_viewer(emanuel,marcela) ,
~trust_report(marcela, microsoft_hits_one_billon)

~trust_report(ana, microsoft_hits_one_billon)

trust_viewer(ana, emanuel) ,
 ~trust_report(emanuel, microsoft_hits_one_billon)

D

U

trust_viewer(emanuel, marcela) ,
~trust_report(marcela, microsoft_hits_one_billon)

trust_report(ana, microsoft_hits_one_billon)

trust_viewer(ana, cristian) ,
trust_report(cristian, microsoft_hits_one_billon)

Fig. 4. DeLP dialectical tree showing no reasons to trust or distrust mi-
crosoft hits one billon.

5 Conclusions and future work

We have presented the architecture of a trust-based recommendation system for
news on the Web. The main contribution of this work is the description of a
client-server type architecture that integrates a trust management component
and a news retriever component to provide personalized recommendation to a
set of end-users. The proposed architecture takes modularity as a fundamental
design principle and has been designed for flexible operation with different trust
managers (e.g., based on DeLP, A Prolog, etc) and to facilitate news retrieval
from a variety of sources (e.g., RSS feeds, social networks, etc.). A set of examples
are presented to illustrate the way in which the notion of trust can be modeled
and managed by the system.

This proposal differs from previous work on news recommendation systems in
allowing to draw logical conclusions about the credibility of news reports based
on the opinions of a set of users. At the present time, the news management
system operates and has been tested with a DeLP interpreter. This allows a
convenient treatment of the defeasible nature of trust. In the future, we expect
to test the system using other logics and interpreters, as well as with other
mechanisms for trust propagation. In addition, we plan to integrate the tool
with social networks’ APIs, such as the ones provided by Facebook or Twitter,
to collect large amounts of trust statements about news reports, news sources
and between users. In this sense, every user will be able to contribute to and
collaborate with specific communities as well as the full network of users. We
anticipate that a large number of trust statements, combined with the great
variety of news services currently available, have the power of revealing the full
potential of qualitative approaches to news recommendation.

References

1. Budzik, J., Hammond, K.J., Birnbaum, L.: Information Access in Context.
Knowledge-Based Systems 14, 37–53 (2001)

2. Carbone, M., Nielsen, M., Sassone, V.: A Formal Model for Trust
in Dynamic Networks. In: Proc. of International Conference on Soft-
ware Engineering and Formal Methods (SEFM’03. pp. 54–63 (2003),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.2153

3. Chesñevar, C., Maguitman, A., Gonzlez, M.P.: Empowering recommendation
technologies through argumentation. In: Argumentation in Artificial Intelligence.
Springer Verlag (2010)

4. Czenko, M., Doumen, J., Etalle, S.: Trust management in p2p systems using stan-
dard tulip (January 2008), http://doc.utwente.nl/64647/

5. Garćıa, A., Simari, G.: Defeasible logic programming: An argumentative approach.
Theory and Practice of Logic Programming 4(1), 95–138 (2004)

6. Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for
recommendation in social networks. In: Proceedings of the fourth ACM conference
on Recommender systems. pp. 135–142. RecSys ’10, ACM, New York, NY, USA
(2010), http://doi.acm.org/10.1145/1864708.1864736

7. Linton, F., Joy, D., Schaefer, H.: Building user and expert models by long-term
observation of application usage. In: Proceedings of the seventh international con-
ference on User modeling. pp. 129–138. Springer-Verlag New York, Inc. (1999)

8. Nagura, R., Seki, Y., Kando, N., Aono, M.: A method of rating the credibility
of news documents on the web. In: SIGIR ’06: Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in information
retrieval. pp. 683–684. ACM Press, New York, NY, USA (2006)

9. Ofuonye, E., Beatty, P., Reay, I., Dick, S., Miller, J.: How do we build trust into
e-commerce web sites? IEEE Software 25, 7–9 (2008)

10. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: The Adap-
tive Web: Methods and Strategies of Web Personalization. pp. 325–341. Springer-
Verlag (2007)

11. Sagui, F.M., Maguitman, A.G., Chesñevar, C.I., Simari, G.R.: Modeling news trust:
A defeasible logic programming approach. Iberoamerican Journal of Artificial In-
telligence 12(40), 63–72 (2009)

12. Sandvig, J.J., Mobasher, B., Burke, R.D.: A survey of collaborative recommenda-
tion and the robustness of model-based algorithms. IEEE Data Eng. Bull. pp. 3–13
(2008)

13. Walter, F., Battiston, S., Schweitzer, F.: A model of a trust-based recommendation
system on a social network. Autonomous Agents and Multi-Agent Systems 16,
57–74 (2008), http://dx.doi.org/10.1007/s10458-007-9021-x, 10.1007/s10458-007-
9021-x

