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Abstract

Automatic extraction of semantic information from text and links in
Web pages is key to improving the quality of search results. However,
the assessment of automatic semantic measures is limited by the cover-
age of user studies, which do not scale with the size, heterogeneity, and
growth of the Web. Here we propose to leverage human-generated meta-
data — namely topical directories — to measure semantic relationships
among massive numbers of pairs of Web pages or topics. The Open Direc-
tory Project classifies millions of URLs in a topical ontology, providing a
rich source from which semantic relationships between Web pages can be
derived. While semantic similarity measures based on taxonomies (trees)
are well studied, the design of well-founded similarity measures for objects
stored in the nodes of arbitrary ontologies (graphs) is an open problem.
This paper defines an information-theoretic measure of semantic similar-
ity that exploits both the hierarchical and non-hierarchical structure of an
ontology. An experimental study shows that this measure improves signif-
icantly on the traditional taxonomy-based approach. This novel measure
allows us to address the general question of how text and link analyses
can be combined to derive measures of relevance that are in good agree-
ment with semantic similarity. Surprisingly, the traditional use of text
similarity turns out to be ineffective for relevance ranking.

1 Introduction

Developing Web search mechanisms depends on addressing two central ques-
tions: (1) how to find related Web pages, and (2) given a set of potentially
related Web pages, how to rank them according to relevance. To evaluate the
effectiveness of a Web search mechanism in finding and ranking results, mea-
sures of semantic similarity are needed. In traditional approaches users provide



manual assessments of relevance, or semantic similarity. This is difficult and
expensive. More importantly, it does not scale with the size, heterogeneity, and
growth of the Web — subjects can evaluate sets of queries, but cannot cover
exhaustively all topics.

The Open Directory Project1 (ODP) is a large human-edited directory of the
Web, employed by hundreds of portals and search sites including Google. The
ODP classifies millions of URLs in a topical ontology. Ontologies help to make
sense out of a set of objects. Once the meaning of a set of objects is available, it
can be usefully exploited to derive semantic relationships between those objects.
Therefore, the ODP provides a rich source from which measurements of semantic
similarity between Web pages can be obtained.

An ontology is a special kind of network. The problem of evaluating semantic
similarity in a network has a long history in psychological theory [32]. More
recently, semantic similarity became fundamental in knowledge representation
where special kinds of networks or ontologies are used to describe objects and
their relationships [8].

Ontologies are often equated with “is-a” taxonomies, but ontologies need not
be limited to these forms. For example, the ODP ontology is more complex than
a simple tree. Some categories have multiple criteria to classify subcategories.
The “Business” category, for instance, is subdivided by types of organizations
(cooperatives, small businesses, major companies, etc.) as well as by areas (au-
tomotive, health care, telecom, etc.). Furthermore, the ODP has various types
of cross-reference links between categories, so that a node may have multiple
parent nodes, and even cycles are present.

While semantic similarity measures based on trees are well studied [7], the
design of well-founded similarity measures for objects stored in the nodes of
arbitrary graphs is an open problem. A few empirical measures have been
proposed, for example based on minimum cut/maximum flow algorithms [20],
but no information-theoretic measure is known. The central question addressed
in this paper is how to estimate semantic similarity in generalized ontologies,
such as the ODP graph, taking advantage of both their hierarchical (“is-a” links)
and non-hierarchical (cross links) components.

1.1 Contributions and Outline

In the next section we briefly review some of the existing information-theoretic
proposals to estimate semantic similarity, in particular, we focus on a tree-based
notion of semantic similarity proposed by Lin [17]. In section 3 we propose a
semantic similarity measure that generalizes the tree-based similarity to the
case of a graph. To the best of our knowledge this is the first information-
theoretic measure of similarity that is applicable to objects stored in the nodes
of arbitrary graphs, in particular topical ontologies and Web directories that
combine hierarchical and non-hierarchical components such as Yahoo!, ODP
and their derivatives. We close the section by addressing the question of how

1http://dmoz.org



to generalize our definition of graph-similarity and by proposing a family of
measures that can be used to compute semantic similarity on other kinds of
ontologies.

Section 4 compares the graph-based semantic similarity measure to the tree-
based one, analyzing the differences between the two measurements and present-
ing an evaluation against human judgments of Web page similarity. We show
that the new measure predicts human responses to a much greater accuracy.

Having validated the proposed semantic similarity measure, in Section 5 we
begin to explore the question of applications, namely how text and link analyses
can be used to derive measures of relevance that are in good agreement with
semantic similarity. We consider various extensions and combinations of basic
text and link similarity and discuss how these correlate with semantic similarity.
We find that surprisingly, classic text-based content similarity is a very noisy
feature, whose value is at best weakly correlated with semantic similarity. We
discuss the potential applications of this result to the design of semantic similar-
ity estimates from lexical and link similarity and to the optimization of ranking
functions in search engines.

2 Information-Theoretic Measures of Semantic
Similarity

Many measures have been developed to estimate semantic similarity in a network
representation. Early proposals have used path distances between the nodes in
the network (e.g. [28]). These frameworks are based on the premise that the
stronger the semantic relationship of two objects, the closer they will be in
the network representation. However, as it has been discussed by a number
of sources, issues arise when attempting to apply distance-based schemes for
measuring object similarities in certain classes of networks where links may not
represent uniform distances [29, 10, 11].

In ontologies, certain links connect very dense and general categories while
others connect more specific ones. To address this problem, some proposals
estimate semantic similarity in a taxonomy based on the notion of informa-
tion content [29, 17]. In these approaches, the semantic similarity between two
objects is related to their commonality and to their differences. Given a set of
objects in an “is-a” taxonomy, the commonality of two objects can be estimated
by the extent to which they share information, indicated by the most specific
class in the hierarchy that subsumes both. Once this common classification is
identified, the meaning shared by two objects can be measured by the amount
of information needed to state the commonality of the two objects.

In information theory [3], the information content of a class or topic t is
measured by the negative log likelihood, − log Pr[t], where Pr[t] represents the
prior probability that any object is classified under topic t. In practice Pr[t] can
be computed for every topic t in an “is-a” taxonomy by counting the fraction
of objects stored in node t and its descendants out of all the objects in the



taxonomy.
Based on this quantitative characterization of object commonality Resnik [29]

introduced an information theoretic definition of similarity that is applicable as
long as the domain has a probabilistic model. This proposal can be used to de-
rive a measure of semantic similarity between two topics t1 and t2 in an “is-a”
taxonomy:

σ(t1, t2) = max
ts∈S(t1,t2)

(− log Pr[ts])

where S(t1, t2) is the set of topics that subsume both t1 and t2. Resnik’s measure
has been applied with some degree of success to diverse scenarios, including
concept relatedness in WordNet [25] and protein similarity based on their Gene
Ontology (GO) annotations [19]. A limitation of Resnik’s measure is that the
similarities between all the children of a topic t are identical, independently of
their information content.

Lin [17] has investigated an information theoretic definition of semantic sim-
ilarity closely related to Resnik’s measure. In Lin’s proposal, not only the
common meaning of the two topics but also their individual meaning is taken
into account. Indeed, according to Lin’s proposal, the semantic similarity be-
tween two topics t1 and t2 in a taxonomy is defined as a function of the meaning
shared by the topics (represented by the most specific topic that subsumes t1
and t2) and the meaning of each of the individual topics:

σ(t1, t2) = max
ts∈S(t1,t2)

2 · log Pr[ts]
log Pr[t1] + log Pr[t2]

Assuming the taxonomy is a tree, the semantic similarity between two topics t1
and t2 is then measured as the ratio between the meaning of their lowest common
ancestor and their individual meanings. This can be expressed as follows:

σT
s (t1, t2) =

2 · log Pr[t0(t1, t2)]
log Pr[t1] + log Pr[t2]

where t0(t1, t2) is the lowest common ancestor topic for t1 and t2 in the tree.
Given a document d classified in a topic taxonomy, we use t(d) to refer to the
topic node containing d. Given two documents d1 and d2 in a topic taxonomy the
semantic similarity between them is estimated as σT

s (t(d1), t(d2)). To simplify
notation, we use σT

s (d1, d2) as a shorthand for σT
s (t(d1), t(d2)). From here on,

we will refer to measure σT
s as the tree-based semantic similarity. The tree-

based semantic similarity measure for a simple tree taxonomy is illustrated in
Figure 1. In this example, documents d1 and d2 are contained in topics t1 and
t2 respectively, while topic t0 is their lowest common ancestor.

This measure of semantic similarity has several desirable properties and a
solid theoretical justification. It is designed to compensate for the fact that the
tree can be unbalanced both in terms of its topology and of the relative size
of its nodes. For a perfectly balanced tree σT

s corresponds to the familiar tree
distance measure [15].
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Figure 1: Illustration of tree-based semantic similarity in a taxonomy.

In prior work [21, 22, 23] we computed the σT
s measure for all pairs of pages in

a stratified sample of about 150,000 pages from across the ODP. For each of the
resulting 3.8×109 pairs we also computed text and link similarity measures, and
mapped the correlations between these and semantic similarity. An interesting
result was that these correlations were quite weak across all pairs, but became
significantly stronger for pages within certain top level categories such as “news”
and “reference.” However, because σT

s is defined only in terms of the hierarchical
component of the ODP, it fails to capture many semantic relationships induced
by the ontology’s non-hierarchical components (symbolic and related links).
As a result, the tree-based semantic similarity between pages in topics that
belong to different top-level categories is zero even if the topics are clearly
related. For instance, according to the tree-based semantic similarity the pages
stored under the topic “Business/E-Commerce” are unrelated to the ones stored
under the topic “Computers/Software/Business/E-Commerce.” This yielded an
unreliable picture when all topics were considered.

3 Graph-Based Semantic Similarity

Let us now generalize the semantic similarity measure to deal with arbitrary
graphs. We wish to define a graph-based semantic similarity measure σG

s that
generalizes the tree-based similarity σT

s to exploit both the hierarchical and
non-hierarchical components of an ontology.

A topic ontology graph is a graph of nodes representing topics. Each node
contains objects representing documents (pages). An ontology graph has a
hierarchical (tree) component made by “is-a” links, and a non-hierarchical com-
ponent made by cross links of different types.

For example, the ODP ontology is a directed graph G = (V,E) where:



• V is a set of nodes, representing topics containing documents;

• E is a set of edges between nodes in V , partitioned into three subsets T ,
S and R, such that:

– T corresponds to the hierarchical component of the ontology,

– S corresponds to the non-hierarchical component made of “symbolic”
cross-links,

– R corresponds to the non-hierarchical component made of “related”
cross-links.

Figure 2 shows a simple example of an ontology graph G. This is defined by
the sets V = {t1, t2, t3, t4, t5, t6, t7, t8}, T = {(t1, t2), (t1, t3), (t1, t4), (t3, t5), (t3, t6),
(t6, t7), (t6, t8)}, S = {(t8, t3)}, and R = {(t6, t2)}. In addition, each node t ∈ V
contains a set of objects. We use |t| to refer to the number of objects stored in
node t (e.g, |t3| = 4).

t2

t1

t4t3

t5 t6

t7 t8

T

S

R

Edge Type

Figure 2: Illustration of a simple ontology.

The extension of σT
s to an ontology graph raises two questions. First, how

to find the most specific common ancestor of a pair of topics in a graph; second,
how to extend the definition of subtree rooted at a topic for the graph case.

An important distinction between taxonomies and ontologies such as the
ODP graph is that edges in a taxonomy are all of the same type (“is-a” links),
while in the ODP graph edges can have diverse types (e.g., “is-a”, “symbolic”,
“related”). Different types of edges have different meanings and should be used
accordingly. One way to distinguish the role of different edges is to assign them
weights, and to vary these weights according to the edge’s type. The weight
wij ∈ [0, 1] for an edge between topic ti and tj can be interpreted as an explicit
measure of the degree of membership of tj in the family of topics rooted at
ti. The weight setting we have adopted for the edges in the ODP graph is as
follows: wij = α for (i, j) ∈ T , wij = β for (i, j) ∈ S, and wij = γ for (i, j) ∈ R.
We set α = β = 1 because symbolic links seem to be treated as first-class
taxonomy (“is-a”) links in the ODP Web interface. Since duplication of URLs
is disallowed, symbolic links are a way to represent multiple memberships, for



example the fact that the pages in topic “Society/Issues/Fraud/Internet” also
belong to topic “Computers/Internet/Fraud.” On the other hand, we set γ = 0.5
because related links are treated differently in the ODP Web interface, labeled
as “see also” topics. Intuitively the semantic relationship is weaker. Different
weighting schemes could be explored.

As a starting point, let wij > 0 if and only if there is an edge of some type
between topics ti and tj . However, to estimate topic membership, transitive
relations between edges should also be considered. Let ti ↓ be the family of
topics tj such that either i = j or there is a path (e1, . . . , en) satisfying:

1. e1 = (ti, tk) for some tk ∈ V ,

2. en = (tk, tj) for some tk ∈ V ,

3. ek ∈ T ∪ S ∪R for k = 1 . . . n,

4. ek ∈ S ∪R for at most one k.

The above conditions express that tj ∈ ti ↓ if there is a directed path in the
graph G from ti to tj , where at most one edge from S or R participates in
the path. The motivation for disregarding multiple non-hierarchical links in
the transitive relations that determine topic membership is both practical and
conceptual. From a computational perspective, allowing multiple cross links is
infeasible because it leads to a dense topic membership, i.e., every topic belongs
to almost every other topic. This is also not robust because a few unreliable
cross links make significant global changes to the membership functions. More
importantly, considering multiple cross links in each path would make the clas-
sification meaningless by mixing all topics together. Considering at most one
cross link in each membership path allows us to capture the non-hierarchical
components of the ontology while preserving feasibility, robustness, and mean-
ing. We refer to ti↓as the cone of topic ti. Because edges may be associated with
different weights, different topics tj can have different degree of membership in
ti↓.

In order to make the implicit membership relations explicit, we represent
the graph structure by means of adjacency matrices and apply a number of
operations to them. A matrix T is used to represent the hierarchical structure
of an ontology. Matrix T codifies edges in T , augmented with 1s on the diagonal:

Tij =

 1 if i = j,
α if i 6= j and (i, j) ∈ T ,
0 otherwise.

We use additional adjacency matrices to represent the non-hierarchical com-
ponents of an ontology. For the case of the ODP graph, a matrix S is de-
fined so that Sij = β if (i, j) ∈ S and Sij = 0 otherwise. A matrix R is
defined analogously, as Rij = γ if (i, j) ∈ R and Rij = 0 otherwise. Con-
sider the fuzzy union operation ∪ on matrices representing relations, defined as
[A ∪ B]ij = max(Aij , Bij), and let G = T ∪ S ∪R. Matrix G is the adjacency
matrix of graph G augmented with 1s on the diagonal.



We will use the MaxProduct fuzzy composition function � [12] defined on
matrices as follows:2

[A�B]ij = max
k

(Aik ·Bkj).

Let T(0) = T and T(r+1) = T(0) � T(r). We define the closure of T, denoted
T+ as follows:

T+ = lim
r→∞

T(r).

In this matrix, T+
ij = 1 if tj ∈ subtree(ti), and T+

ij = 0 otherwise. Note that the
computation of the closure T+ converges in a number of steps which is bounded
by the maximum depth of the tree T, is independent of the weight α, and does
not involve the weights β and γ.

Finally, we compute the matrix W as follows:

W = T+ �G�T+.

The element Wij can be interpreted as a fuzzy membership value of topic tj in
the cone ti↓, therefore we refer to W as the fuzzy membership matrix of G.

As an illustration, consider the example ontology in Figure 2. In this case
the matrices T, G, T+ and W are defined as follows:

T =



t1 t2 t3 t4 t5 t6 t7 t8
t1 1 1 1 1 0 0 0 0
t2 0 1 0 0 0 0 0 0
t3 0 0 1 0 1 1 0 0
t4 0 0 0 1 0 0 0 0
t5 0 0 0 0 1 0 0 0
t6 0 0 0 0 0 1 1 1
t7 0 0 0 0 0 0 1 0
t8 0 0 0 0 0 0 0 1



G =



t1 t2 t3 t4 t5 t6 t7 t8
t1 1 1 1 1 0 0 0 0
t2 0 1 0 0 0 0 0 0
t3 0 0 1 0 1 1 0 0
t4 0 0 0 1 0 0 0 0
t5 0 0 0 0 1 0 0 0
t6 0 .5 0 0 0 1 1 1
t7 0 0 0 0 0 0 1 0
t8 0 0 1 0 0 0 0 1


2With our choice of weights, MaxProduct composition is equivalent to MaxMin composi-

tion.



T+ =



t1 t2 t3 t4 t5 t6 t7 t8
subtree(t1) 1 1 1 1 1 1 1 1
subtree(t2) 0 1 0 0 0 0 0 0
subtree(t3) 0 0 1 0 1 1 1 1
subtree(t4) 0 0 0 1 0 0 0 0
subtree(t5) 0 0 0 0 1 0 0 0
subtree(t6) 0 0 0 0 0 1 1 1
subtree(t7) 0 0 0 0 0 0 1 0
subtree(t8) 0 0 0 0 0 0 0 1



W =



t1 t2 t3 t4 t5 t6 t7 t8
t1↓ 1 1 1 1 1 1 1 1
t2↓ 0 1 0 0 0 0 0 0
t3↓ 0 .5 1 0 1 1 1 1
t4↓ 0 0 0 1 0 0 0 0
t5↓ 0 0 0 0 1 0 0 0
t6↓ 0 .5 1 0 1 1 1 1
t7↓ 0 0 0 0 0 0 1 0
t8↓ 0 0 1 0 1 1 1 1


The semantic similarity between two topics t1 and t2 in an ontology graph

can now be estimated as follows:

σG
s (t1, t2) = max

k

2 ·min (Wk1,Wk2) · log Pr[tk]
log(Pr[t1|tk]·Pr[tk]) + log(Pr[t2|tk]·Pr[tk])

.

The probability Pr[tk] represents the prior probability that any document is
classified under topic tk and is computed as:

Pr[tk] =

∑
tj∈V (Wkj · |tj |)

|U |
,

where |U | is the number of documents in the ontology. The posterior probability
Pr[ti|tk] represents the probability that any document will be classified under
topic ti given that it is classified under tk, and is computed as follows:

Pr[ti|tk] =

∑
tj∈V (min(Wij ,Wkj) · |tj |)∑

tj∈V (Wkj · |tj |)
.

The proposed definition of σG
s is a generalization of σT

s . In the special case
when G is a tree (i.e., S = R = ∅), then ti↓ is equal to subtree(ti), the topic
subtree rooted at ti, and all topics t ∈ subtree(ti) belong to ti↓ with a degree
of membership equal to 1. If tk is an ancestor of t1 and t2 in a taxonomy, then
min(Wk1,Wk2) = 1 and Pr[ti|tk] · Pr[tk] = Pr[ti] for i = 1, 2. In addition, if
there are no cross-links in G, the topic tk whose index k maximizes σG

s (t1, t2)
corresponds to the lowest common ancestor of t1 and t2.

3.1 Towards a More General Definition of Graph-Similarity

A natural question that arises is how to generalize the proposed measure of graph
similarity in such a way that it can be applied to other ontologies. Different



ontologies have different kinds of edges with diverse semantics. As we have
seen earlier, the ODP ontology has three types of edges “is-a”, “symbolic” and
“related.” Our choice of a particular weighting scheme (α = 1, β = 1, and
γ = 0.5) as well as the selection of a specific composition operator (MaxProduct)
and transitive membership relations reflect our interpretation of the semantics
for the different types of edges.

Applying graph-based semantic similarity to other ontologies requires appro-
priate mechanisms to model different kinds of ontology components and their
interactions. For example, the Gene Ontology3 has two kinds of hierarchical
edges (“is-a” and “part-of”). On the other hand, the WordNet ontology4 has
a much richer typology of relations. This includes semantic relations between
synsets (synonym sets) such as hypernym, hyponym, meronym and holonym as
well as lexical relations between senses of words (members of synsets) such as
antonym, “also see”, derived forms and participle.

Two main aspects of the proposed graph-based semantic similarity measure
can be generalized. One is the definition of σG

s and the other is the way the
information content of a class or topic, characterized by the notion of topic
cone, is estimated. The definition of σG

s as discussed in this work is sufficiently
general to suit a variety of graph ontologies. What seems particularly sensitive
to the specific ontologies is how a topic cone (matrix W) is calculated as this
depends directly on the semantics attached to the edges.

Let matrix Eij codify a class of edges, where Eij is augmented with 1s on
the diagonal. A family of characterizations of the notion of topic cone can be
expressed as instances of the following general formula:

W =
⋃
i

⊙
j

Eij
(kij)

where
⋃

is the fuzzy Union operator,
⊙

is the MaxProduct fuzzy composition
operator (or some other suitable fuzzy composition operator such as MaxMin)
and kij ∈ N ∪ {+}.

The above formula is expressive enough to model the notion of topic cone
in different classes of ontologies. For example, in the case of a taxonomy it is
sufficient to set E11 = T and k11 = +. For the case of the ODP graph it is easy
to see that our formulation of matrix W can also be expressed as a special case
of the above general formula as follows:

W = (T+ � S�T+) ∪ (T+ �R�T+).

Figure 3(a) illustrates how a path is computed according to this definition of
topic cone.

We are exploring other promising formulations of matrix W, including the
following ones:

W = (T+ � S�T+) ∪ (T+ �R),

3http://www.geneontology.org/
4http://wordnet.princeton.edu/



and
W = T+ � S�T+ �R.

According to the first formulation, illustrated in Figure 3(b), a path in a topic
cone can contain any number of hierarchical edges (T ) but at most one cross-
link (S or R). In addition, it must satisfy that if a cross-link of type “related”
(R) occurs in a path, it must be the last in the path.

The second formulation of topic cone, illustrated in Figure 3(c), also allows
any number of hierarchical edges in a path. Cross-links of type “symbolic” and
“related” can occur at most once each in a path, with links of type “related”
only occurring at the end of a path.

T+

T+T+

S

R
T+

(a)

T+ T+

T+

S

R

(b)

T+

S R

T+

(c)

Figure 3: Illustration of three ways of identifying paths in a topic cone.

These and other characterizations of topic cone will be studied in detail in
future work. The results presented in the rest of this article are based on our
original characterization of topic cone.

4 Evaluation

The proposed graph-based semantic similarity measure was applied to the ODP
ontology. The portion of the ODP graph we have used for our analysis consists
of more than half million topic nodes (only World and Regional categories were
discarded). Computing semantic similarity for each pair of nodes in such a huge
graph required more than 5,000 CPU hours on IU’s Analysis and Visualization of
Instrument-Driven Data (AVIDD) supercomputer facility. The computational
component of AVIDD consists of two clusters, each with 208 Prestonia 2.4-
GHz processors. The computed graph-based semantic similarity measurements
in compressed format occupies more than 1 TB of IU’s Massive Data Storage
System. After computing the graph-based semantic similarity, we dynamically
computed the less computationally expensive tree-based semantic similarity on
the same ODP topic pairs.

4.1 Analysis of Differences

The first question to ask of the newly proposed graph-based semantic similarity
definition is whether it produces different measurements from the traditional
tree-based similarity. The two measures are moderately correlated (Pearson



coefficient rP = 0.51). To dig deeper, we map in Figure 4 the distributions of
similarities. Each (σT

s , σG
s ) coordinate encodes how many pairs of pages in the

ODP have semantic similarities falling in the corresponding bin. By definition
σT

s is a lower bound for σG
s . Significant numbers of pairs yield σG

s > σT
s ,

indicating that the graph-based measure indeed captures semantic relationships
that are missed by the tree-based measure. The largest difference is hard to
observe in the map because it occurs in the σT

s = 0 bins. Here there are many
pairs in different top-level categories of the ODP, which are related according
to non-hierarchical links.

To better quantify the differences between σT
s and σG

s , Figure 4 also shows
the average graph-based similarity 〈σG

s 〉 as a function of σT
s . The relative dif-

ference is as large as 20% around σT
s = 0.32. The inset highlights the largest

difference, which occurs for σT
s = 0.

4.2 Validation by User Study

Knowing that tree-based and graph-based measures give us quantitatively differ-
ent estimates of semantic similarity, we conducted a human-subjects experiment
to evaluate the proposed graph-based measure σG

s . As a baseline for compari-
son we used Lin’s tree-based measure σT

s . The goal of this experiment was to
contrast the predictions of the two semantic similarity measures against human
judgments of Web pages relatedness.

Thirty-eight volunteer subjects were recruited for a 30 minute experiment
conducted online. Subjects answered questions about similarity between Web
pages. For each question, they were presented with a target Web page and two
candidate Web pages (see Figure 5). The subjects had to answer by selecting
from the two candidate pages the one that was more related to the target Web
page or by indicating that neither of the candidate pages was related to the tar-
get. Given the constraint on the duration of an experiment, there is a trade-off
between diversity and number of examples. One could allocate each question
to a different triplet, or have a smaller number of target pages with several dif-
ferent pairs of candidate pages for each target. Preliminary tests indicated that
the former approach imposed a higher cognitive load on the subjects, requiring
more time per question and decreasing the total number of questions they could
answer in the allotted time. To increase the number of questions and the pre-
cision of the results, we settled on the latter approach. A total of 6 target Web
pages randomly selected from the ODP directory were used for the evaluation.
For each target Web page we presented a series of 5 pairs of candidate Web
pages, for a total of 30 questions. To investigate which of the two methods was
a better predictor of human assessments of Web page similarity, the candidate
pages were selected with controlled differences in their semantic similarity to
the target page. Given a target Web page pT , each pair of candidate pages pC

1

and pC
2 used in our study satisfied the following two conditions:

Condition 1: σT
s (pC

1 , pT ) ≥ σT
s (pC

2 , pT )
Condition 2: σG

s (pC
1 , pT ) < σG

s (pC
2 , pT )
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Table 1: Example of a triplet used in the evaluation

Page URL Topic

pT http://www.muppetsonline.com/ Arts
Performing Arts
Puppetry
Muppets

pC
1 http://www.theentertainmentbusiness.com/sesame.htm Arts

Television
Programs
Children’s
Sesame Street
Characters

pC
2 http://www.yale.edu/yags/ Arts

Performing Arts
Circus
Juggling
Clubs and Organizations
College Juggling Clubs

The use of the above conditions guarantees that for each question the two models
disagreed on their prediction of which of the two candidate pages is more related
to the target page. The pages in the 30 triplets were chosen at random among all
the cases satisfying the above conditions. To ensure that the participants made
their choice independently of the questions already answered, we randomized
the order of the options. Table 1 shows an example of a triplet of pages used
in our study, corresponding to the question in the snapshot of Figure 5. The
users were presented with the target and candidate pages only — no information
related to the topics of the pages was shown to the users.

The semantic similarity between the target page and each of the candidate
pages in our example, according to the two measurements is as follows:

σT
s (pC

1 , pT ) = 0.24 σT
s (pC

2 , pT ) = 0.50
σG

s (pC
1 , pT ) = 0.91 σG

s (pC
2 , pT ) = 0.70

For this triplet of pages, the tree-based method predicts that pC
2 is more similar

to the target than pC
1 (σT

s (pC
2 , pT ) > σT

s (pC
1 , pT )). On the other hand, according

to the prediction made by the graph-based method pC
1 should be preferred over

pC
2 (σG

s (pC
1 , pT ) > σG

s (pC
2 , pT )).

To test which of the two methods was a better predictor of subjects’ judg-
ments of Web page similarity we considered the selections made by each of the
subjects and computed the percentage of correct predictions made by the two
methods. Table 2 summarizes the statistical results. This comparison shows
that the graph-based semantic similarity measure results in statistically signifi-
cant improvements over the tree-based one.



Figure 5: A snapshot of the experiment setup for our user study. The pages
displayed are those of Table 1.

Table 2: Mean, standard deviation, and standard error of the percentage of
correct predictions by tree-based vs. graph-based semantic similarity, as deter-
mined from the assessments by the N subjects. The fact that the confidence
intervals do not overlap is equivalent to using a t-test to determine that the
difference in average accuracy is statistically significant at the 95% confidence
level.

N MEAN STDEV SE 95% C.I.
σT

s 38 5.70% 4.71% 0.76% (4.2%, 7.2%)
σG

s 38 84.65% 11.19% 1.82% (81.1%, 88.2%)

5 Case Studies

Having validated our semantic similarity measure σG
s , let us now begin to explore

its applications to performance evaluation. Using σG
s as a surrogate for user



assessments of semantic similarity, we can address the general question of how
text and link analyses can be combined to derive measures of relevance that
are in good agreement with semantic similarity. An analogous approach has
been used in the past to evaluate similarity search, but relying on only the
hierarchical ODP structure as a proxy for semantic similarity [9, 23].

Let us start by introducing two representative similarity measures σc and σ`

based on textual content and hyperlinks, respectively. Each is based on the TF-
IDF vector representation and “cosine similarity” function traditionally used in
information retrieval [30]. For content similarity we use:

σc(p1, p2) =
~p c
1 · ~p c

2

‖~p c
1 ‖ · ‖~p c

2 ‖

where (p1, p2) is a pair of Web pages and ~p c
i is the TF-IDF vector representation

of pi, based on the terms in the page. Noise words are eliminated [6] and other
words are conflated using the standard Porter stemmer [27].

For link similarity measure we define:

σ`(p1, p2) =
~p `
1 · ~p `

2

‖~p `
1 ‖ · ‖~p `

2 ‖

where ~p `
i is the link frequency–inverse document frequency (LF-IDF) vector rep-

resentation of page pi. LF-IDF is analogous to TF-IDF, except that hyperlinks
(URLs) are used in place of words (terms). A page link vector is composed of
its outlinks, inlinks, and the pages’s own URL. Link similarity is a measure of
the local undirected clustering coefficient between two pages. A high value of σ`

indicates that the two pages belong to a clique of pages. Related measures are
often used in link analysis to identify a community around a topic. This measure
generalizes co-citation [31] and bibliographic coupling [14], but also considers
directed paths of length L ≤ 2 links between pages. Such directed paths are
important because they could be navigated by a user or crawler. Outlinks were
obtained from the pages themselves, while inlinks were obtained from a search
engine.5

One could of course explore alternative link and content representations and
similarity measures, such as those based on conceptual graphs [24]. However
our preliminary experiments indicate that other commonly used measures such
as TF-based cosine similarity and the Jaccard coefficient do not qualitatively
alter the observations that follow.

5.1 Combining Content and Link Similarity

Once text and links were extracted from the 1.12× 106 Web pages of the ODP
ontology, σc ∈ [0, 1] and σ` ∈ [0, 1] were computed for each of 1.26×1012 pairs of
pages. A 200×200×200 histogram with coordinates (σc, σ`, σ

G
s ) was generated

to analyze the relationships between the various similarity measures.
5We used the Google Web API (www.google.com/apis/) with special permission.



The massive data thus collected allows us to study how well different au-
tomatic similarity measures based on observable features (content and links)
approximate semantic similarity. We considered a number of simple functions
f(σc, σ`) including:

• various linear combinations f = λσc + (1 − λ)σ` for 0 ≤ λ ≤ 1, of which
we report the cases λ = 0 (f = σ`), λ = 0.2, λ = 0.8, and λ = 1 (f = σc);

• the product f = σcσ`;

• the step-linear function f = σcH(σ`), where H(σ`) = 1 for σ` > 0 and 0
otherwise;

and other functions omitted for space considerations. Figure 6 plots the Pearson
and Spearman correlations between σG

s and these functions, versus a threshold
on σc.

The Pearson correlation coefficient rP tells us the degree to which the values
of each function f(σc, σ`) agree with σG

s . We can see that the correlations
are rather weak, 0 < rP < 0.2, for all f in the plot when we consider all
page pairs. If we restrict the analysis to pairs that have content similarity σc

above a minimum threshold, the correlations can become much stronger. It is
meaningful to use a σc threshold because in applications such as search engines,
the pages to be ranked are those that are retrieved from an index based on a
match, typically between pages and a user query or some other model page. It is
interesting to observe that the functions that rely heavily on content similarity
(f = λσc + (1 − λ)σ` for high λ) perform particularly poorly at predicting
semantic similarity. They are at best weakly correlated with σG

s unless one
applies a very high σc threshold. This is rather surprising because prior to the
introduction of link based importance measures such as PageRank [1] content
was the sole source of evidence for ranking pages, and content similarity is still
widely seen as a central component of any ranking algorithm.

The Pearson correlation assumes normally distributed values. Since the
similarity functions defined above have mostly exponential distributions, it is
worth to validate the above results using the Spearman rank order correlation
coefficient rS , which is high if two functions agree on the rankings they produce
irrespective of the actual values. This is reasonable in our setting because from
a search engine user perspective, what matters is the order of the hit pages and
not the values used by the ranking function. The Spearman correlation data in
Figure 6 confirms the above observations, with even more striking evidence of
the noisy nature of content similarity. One can see a clear separation between
the poor rankings produced by functions that depend linearly on σc and the
relatively good rankings produced by functions that either do not consider σc

or that scale σc by σ`.
The above analysis highlights an extremely low discrimination power of lexi-

cal similarity. This might suggest a filtering role for lexical similarity, in which all
pages below a small threshold would not be considered while above the thresh-
old only link-based measures would be used for the sake of ranking. While
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Figure 6: Pearson (top) and Spearman (bottom) correlations between graph-
based semantic similarity σG

s and different functional combinations of content
and link similarity, applying increasing thresholds on content similarity.

such a bold strategy must be scrutinized carefully, it could lead to a significant
simplification of ranking algorithms.

5.2 Exploiting Term Co-occurrence to Improve Content
Similarity

The observed poor performance of the traditional measure of content similarity
drove us to explore extended forms of document similarity that exploit latent



semantic relationships coming from term co-occurrence. When computing cosine
similarity based on the vector space model, terms are represented as pairwise
orthogonal vectors and document vectors are represented as linear combinations
of these term vectors. Representing terms as orthogonal vectors presupposes
semantic independence among them, which is clearly an unrealistic assumption.

The negative effects of this simplifying assumption have been addressed by
previous studies and many extensions of the basic vector space model have
been proposed based on the idea that terms that tend to co-occur are semanti-
cally related. For example, techniques such as Latent Semantic Indexing (LSI)
apply singular value decomposition (SVD) to reduce the dimensions of the term-
document space, harvesting the latent relations existing between documents and
between terms [5]. The LSI method is computationally expensive and therefore
many methods have been proposed to approximate LSI with reduced cost. An
example of such methods is based on mapping documents to a kernel space
where documents that do not share any term can still be close to each other [4].
A similar idea has also been investigated in [13] and more recently in [18]. In
these proposals term-similarity is computed based on document similarity, and
vice versa. This gives rise to a series of recursive equations that converges to a
“more semantic” form of content similarity than the traditional one.

In order to investigate the effect of term co-occurrence on document simi-
larity we implemented an extended form of content similarity. As in previous
proposals, the underlying assumption for this new measure of similarity is that
document similarity affects term similarity and vice versa, but instead of re-
peatedly computing one form of similarity in terms of the other, we only looked
at a single step in this recursive process.

As a starting point, we computed term co-occurrence as follows:

κ(t1, t2) =
~t1 · ~t2

‖~t1‖ · ‖~t2‖

where (t1, t2) is a pair of terms and ~ti is the vector representation of ti, based
on the documents in which ti occurs.

Finally, given a pair of Web pages (p1, p2), our extended form of document
similarity was computed as follows:

σκ(p1, p2) =
(~p c

1 ×K) · (~p c
2 ×K)

‖~p c
1 ×K‖ · ‖~p c

2 ×K‖

where ~p c
i ×K is the TF-IDF vector representation of pi projected into a non-

orthogonal term space defined by the term-term matrix K, where [K]ij =
κ(ti, tj).

In order to investigate if σκ is a good approximation of σG
s we used a subset

of the data discussed in section 5.1. This reduced set consists of 150,000 URLs
from 47,174 topics. The sample was obtained by extracting 10,000 URLs from
each of the 15 top-level branches of the ODP ontology. Terms occurring in a
single document were eliminated. After this term cleaning process, those doc-
uments containing no terms were also removed, resulting on a final corpus of
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Figure 7: Pearson (top) and Spearman (bottom) correlations between graph-
based semantic similarity σG

s and the two forms of content similarity, applying
increasing thresholds on content similarity.

124,172 documents and 94,859 terms. The use of a sample considerably smaller
than the one described in section 5.1 was necessary due to the higher time and
memory resources required to compute σκ. We have compared the results ob-



tained for the different functional combinations of content and link similarity
described in section 5.1 using the original sample and the reduced one. In this
analysis we have observed that the relative performance of the different func-
tional combinations of content and link similarity remains essentially unaffected
despite the reduction on the number of pages used in the evaluation. This
justifies our use of a smaller corpus for this and future studies.

Based on this corpus, we generated a 200× 200× 200 histogram with coor-
dinates (σc, σκ, σG

s ) for 1.54 × 1010 pairs of pages. Figure 7 plots Pearson and
Spearman correlations between σG

s and the two forms of content similarity, σc

and σκ, versus a threshold on σc. For Pearson correlation we observe that σG
s is

better correlated to σκ than to σc for σc ≥ 0.8, while for Spearman correlation
the improvement of σκ over σc can be observed when σc ≥ 0.5. This result
indicates that after filtering unrelated Web pages, the new measure of content
similarity produces a better ranking of pages than the traditional measure of
content similarity. This provides new supporting evidence for the usefulness of
exploiting term co-occurrence to approximate semantic similarity. A subsequent
analysis showed us that the product f = σκσ` does not outperform f = σcσ`

or f = σ`, which once again highlights the superiority of link similarity as an
approximation of semantic similarity.

5.3 Integrating Content and Link Similarity

An alternative way to approximate semantic similarity is based on integrating
(rather than combining) content and link similarity. We have implemented a
measure of similarity based on paths of length L ≤ 2 links between pages, where
the importance of a link in a path is adjusted by two weighting factors. First,
we used the link IDF value to discount similarity if the link pointed to a page
with many inlinks. Second, we used lexical similarity between pages to weaken
the importance of those links connecting pages with low content similarity.

k

j
ki ,σ i

kj ,σ

j
ji ,σ

i j

Figure 8: Diagram illustrating how two pages pi and pj can be connected to
each other by a path of length L ≤ 2.

In order to compute the similarity for a pair of pages (pi, pj) we represent
pi and pj as vectors with elements of the form σj

i,k and σi
j,k respectively. As

illustrated in Figure 8, the elements σj
i,k and σi

j,k are obtained by considering
the pages pk connected to both pi and pj by means of a link. Formally, consider
undirected paths of length L ≤ 2 between pi and pj , where for some k there
exist links pi → pk or pk → pi and pj → pk or pk → pj . Then, the values of the



elements σj
i,k are defined as follows:

σj
i,k =


1 if i = k,
σc(pi, pk) · IDF(pk)/2 if pi → pk,
σc(pi, pk) · IDF(pi)/2 if pk → pi,
σc(pi, pk) · (IDF(pi) + IDF(pk))/2 if pi → pk and pk → pi.

Let ~p
σ2
1

1 and ~p
σ1
2

2 be the vector representation for a pair of pages (p1, p2). The
integrated content and link similarity measure for these pages is computed as
follows:

σc`
(p1, p2) =

~p
σ2
1

1 · ~p σ1
2

2

‖~p σ2
1

1 ‖ · ‖~p σ1
2

2 ‖

Once again, our measure of graph similarity σG
s was used to investigate if σc`

is a good approximation of semantic similarity. To perform this analysis we
used a subset of the ODP data discussed in section 5.1 consisting of 9.27× 105

URLs and their corresponding outlinks and inlinks. Figure 9 illustrates the
three possible cases that can occur when computing σc`

(pi, pj): (1) there is a
link from pi to pj (or viceversa), (2) pi and pj are connected to pk ∈ ODP, and
(3) pi and pj are connected to pk 6∈ ODP. Because we only collected lexical
information for pages inside the ODP, the measure σc(pi, pk) required for the
computation σj

i,k was not available for pages pk outside the ODP. In such cases,
we used σc(pi, pj) as a surrogate for σc(pi, pk).

k

k

i j

j
ki ,σ i

kj ,σ

j
ki ,σ i

kj ,σ

j
ji ,σ

ODP

Figure 9: Diagram illustrating three cases of how two pages pi and pj in the
ODP can be connected to each other by a path of length L ≤ 2.

To complete our analysis we generated two 200× 200× 200 histograms with
coordinates (σc, σc`

, σG
s ) and (σc, σ`, σ

G
s ) for 8.59 × 1011 pairs of pages. Fig-

ure 10 shows Pearson and Spearman correlations between σG
s and σc`

, versus
a threshold on σc. The correlations between σG

s and σcσ` are also shown for
comparison. This preliminary evaluation suggests that σc`

is not appreciably
superior to the simpler and less computationally expensive f = σcσ`.
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Figure 10: Pearson (top) and Spearman (bottom) correlations between σG
s and

σc`
, applying increasing thresholds on content similarity. The correlations be-

tween σG
s and σcσ` are plotted for comparison.

5.4 Evaluating Ranking Functions

Let us finally illustrate how the proposed semantic similarity function can be
used to automatically evaluate alternative ranking functions. This makes it



possible to mine through a large number of alternative functions automatically
and cheaply, reserving user studies for the most promising candidates. We want
to compare the quality of a ranking function to the baseline ranking obtained
by the use of semantic similarity. The sliding ratio score [26, 16] compares
two rankings when graded quality assessments are available.6 This measure is
defined as the ratio between the cumulative quality scores of the top-ranked
pages according to two ranking functions. We can generalize the sliding ratio
in the following ways:

• use a page as a target rather than an arbitrary query, as is done in “query
by example” systems;

• use σG
s as a reference ranking function;

• sum over all pages in an ontology such as the ODP, each used in turn
as a target, thus covering the entire topical space and eliminating the
dependence on a single target.

Let us thus define a generalized sliding ratio score as follows:

GSR(f,N) =

N∑
(i,j):rankf (i,j)=1

σG
s (i, j)

N∑
(i,j):rank

σG
s

(i,j)=1

σG
s (i, j)

where (i, j) is a pair of pages, f is a ranking function to be tested, and N is the
number of top-ranked pairs considered. Note that for any f , GSR(f,N) → 1
as N tends to the total number of pairs. The ideal ranking function is one such
that GSR(f,N) ≈ 1 for low N as well. In simplistic terms, GSR(f,N) tells us
how well a function f ranks the top N pairs of pages.

The generalized sliding ratio score can be readily measured on our ODP data
for any f(σc, σ`). Only pairs with σc > 0 are considered, since typically in a
search engine only pages matching the query are retrieved. In Figure 11 we plot
GSR(f,N) versus N for the simple combination functions f(σc, σ`) introduced
in Section 5.1. Consistently with the correlation results, the functions that de-
pend heavily on content similarity rank poorly. Again this is only an illustration
of how the σG

s measure can be applied to the evaluation of arbitrary ranking
functions.

6 Discussion

In this paper we introduced a novel measure of semantic similarity for Web
pages that generalizes the well-founded information-theoretic tree-based seman-

6In the common case when just binary relevance assessments are available, one resorts to
precision and recall; the sliding ratio score is a more sophisticated measure enabled by more
refined semantic similarity data.
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Figure 11: Generalized sliding ratio score plots for different functional combi-
nations of content and link similarity. We omit the region N < 105 where GSR
is constant for all f up to the resolution of our histogram bins.

tic similarity measure to the case in which pages are classified in the nodes of
an arbitrary graph ontology with both hierarchical and non-hierarchical compo-
nents. This measure can be readily applied to mine semantic data from topical
ontologies and Web directories such as Yahoo!, the ODP and their derivatives.

Similarity is commonly viewed as an example of relation satisfying the fol-
lowing three conditions:

• Maximality: σ(a, b) ≤ σ(a, a) = 1

• Symmetry: σ(a, b) = σ(b, a)

• Triangular Inequality: σ(a, b) · σ(b, c) ≤ σ(a, c).

These conditions are adaptations of the minimality, symmetry and triangle in-
equality axioms of metric distance functions. The definition of σG

s proposed in
this paper satisfies maximality and symmetry but not the triangular inequality
condition. With sufficient computational resources, a new measure of seman-
tic similarity satisfying the triangular inequality principle can be computed by
applying an adaptation of Floyd-Warshall transitive closure algorithm [2] to σG

s :

σ(0)(i, j) = σG
s (i, j)

σ(r+1)(i, j) = max (σ(r)(i, j),max
k

(σ(0)(i, k) · σ(r)(k, j)))

σ(i, j) = lim
r→∞

σ(r)(i, j).

While in many cases the lower limit imposed by the triangular inequality appears
to be intuitive, many authors have argued against it. Tversky [32] illustrates



this position with an example about the similarity between countries: “Jamaica
is similar to Cuba (because of geographical proximity); Cuba is similar to Russia
(because of their political affinity); but Jamaica and Russia are not similar at
all.” This example fits the case of Web pages and their topics, suggesting that
the triangular inequality should not be accepted as a cornerstone of similarity
models.

Computing the graph-based semantic similarity measure is a computation-
ally expensive task, both in terms of space and time. While matrices T, G, T+

and W are sparse and easy to store, codifying the graph-based semantic similar-
ity measure σG

s for the ODP topics required the use of a dense matrices of size
571, 148× 571, 148. The time complexity for computing the semantic similarity
for n topics is O(n3) in the worst case; the actual complexity depends on the
density of the W matrix. Some of the techniques adopted to deal with the time
complexity of the problem include indexing the sparse structure of the matrices
for fast access and using a software vector register to compute the MaxProduct
fuzzy composition function efficiently. Our approach may not scale easily to
ontologies much larger than the ODP graph as it is today. However, approxi-
mations of σG

s may be computed in reasonable time if appropriate heuristics are
applied (e.g., via the use of thresholds).

We have shown that the proposed semantic similarity measure predicts hu-
man judgments of relatedness with significantly greater accuracy than the tree-
based measure. Finally we have undertaken a massive data mining effort on
ODP data in order to begin to explore how text and link analyses can be com-
bined to derive measures of relevance in agreement with semantic similarity.

The main, surprising result of our initial analysis with the graph-based se-
mantic similarity is that the classic text-based TF-IDF cosine similarity is an
extremely noisy feature, unfit for ranking Web pages. While it seems helpful
to filter out pages with very low lexical similarity (σc < 0.05), text-based mea-
sures do not seem to help in ranking the remaining pages. On the contrary
they are very poorly correlated with semantic similarity, possibly reflecting the
extent to which ambiguous terms mislead the search process. While this result
helps to explain why early search engines did so poorly and validates the use
of link-based measures such as PageRank, the seemingly unredeemed quality of
content similarity is unexpected. The implication must be a revisitation of the
role of content similarity in ranking Web results.

The methodology described here to evaluate ranking algorithms based on
semantic similarity can be applied to arbitrary combinations of ranking func-
tions stemming from text analysis (e.g. LSI, query expansion, tag weighting,
etc.), link analysis (e.g. authority, PageRank, SiteRank, etc.), and any other
features available to a search engine (e.g. freshness, click-through rate, etc.).
Yet the applications of the proposed semantic similarity measure are broader
than just Web search. Classification, clustering and resource discovery also rely
on semantic mining of features that can be extracted automatically. Phenom-
ena such as the emergence of semantic network topologies may also be studied
in the light of the proposed semantic similarity measure. For instance, we are
currently using semantic similarity to evaluate adaptive peer based distributed



search systems. In this evaluation framework queries and peers are associated
with topics from the ODP ontology. This allows us to monitor the quality of a
peer’s neighbors over time by looking at whether a peer chooses “semantically”
appropriate neighbors to route its queries.

In future work the semantic similarity measure should be further validated
through user studies. The study presented here focuses on cases where σG

s and
σT

s disagree, and thus it tells us that σG
s is more accurate than σT

s but is too
biased to satisfactorily answer the broader question of how well σG

s predicts
assessments of semantic similarity by human subjects in general. It is possible
that alternative weighting schemes for the different types of links in the ODP
ontology may lead to measures with improved accuracy.

The evaluations outlined here have focused on purely local text and link
analysis. For example, we have not looked at the role of more global link
and text analysis techniques such as PageRank and latent semantic indexing in
improving the quality of ranking by favoring authoritative pages or improving
content similarity. These are also directions for future work.

Due to the growing number of emerging Web search techniques and the
scale of the Web, automatic evaluation mechanisms are crucial. In light of
the availability of rich semantic information sources, like the ODP ontology,
we have proposed a reliable method for the algorithmic detection of semantic
similarity between Web pages. The proposed approach will provide insight for
better understanding the limitations of existing search techniques and inspire
the development of new and more powerful Web search tools.
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