Several techniques for improving web search have been developed over the last years. Most existing approaches are still limited, mainly due to the absence of qualitative criteria for ranking results and insensitivity to user preferences for guiding the search. At the same time, defeasible argumentation evolved as a successful approach in AI to model commonsense qualitative reasoning with applications in many areas, such as agent theory, knowledge engineering and legal reasoning. This paper presents ARGUE\textsc{Net}, a recommender system that classifies search results according to preference criteria declaratively specified by the user. The proposed approach integrates a traditional web search engine with a defeasible argumentation framework.}

Keywords: recommender systems, defeasible argumentation, decision support systems

1. Introduction

Despite the many benefits that Internet is bringing to its users, the huge amount of data reachable by querying a conventional search engine is rapidly becoming overwhelming. In the face of this issue, there have been several proposals to prioritize search results in an efficient and reliable way. The success of search engines like Google is due not only to the large volume of web pages indexed, but also to the quality of the search results returned.

Several techniques for improving web search have been developed, ranging from the use of powerful ranking algorithms [5, 15] to the so-called special syntaxes [6] that can be used to search specific parts of web pages (e.g., title, text body, anchor text) or specific types of information (e.g., file type, date range, phone numbers). To a certain degree, the combination of ranking methods and special syntaxes empowers users to successfully direct their searches to the information they want to see.

Although the effectiveness and value of the current web search engines is remarkable, the existing approaches are still limited due to a number of barriers:

- **Absence of qualitative criteria for solving search queries**: search engines do not apply qualitative criteria for guiding meaningful searches and ranking results. They rely instead on a variety of syntactic criteria for pruning the search space (e.g., by excluding certain web domains) and on quantitative measures for ranking search results (e.g., by counting occurrences of matching keywords or by assessing sites popularity).

- **Insensitivity to user preference criteria**: search engines perform searches independently of the user’s preferences. Only the terms that explicitly appear in a query are used to describe the user’s information needs. In addition, information sources that the user considers reliable cannot be prioritized over those considered unreliable.

- **Obscure query syntaxes**: special syntaxes are powerful but follow hard-to-memorize rules that are difficult to master by the ordinary user: certain syntaxes cannot be mixed, whereas others may result in too narrow queries, or even cancel each other.

For an increasing number of situations, the key to success is access to high-quality relevant information guided by a simple specification of the information needs and some preference criteria, without excessive distraction. Consider, for example, the case of a journalist investigating certain events and searching for relevant online published information. As the journalist browses the results returned by a conventional search engine, she will apply some preference criteria to manually select the most valuable results (e.g., those articles published during a specific date range will be preferred over others). Much of the process of selecting such material according to some preference criteria could be effectively automatized. However, a full-spectrum analysis such as the one described above...
is beyond the power of traditional web search engines like Google or ALTAVISTA.

Recommender systems [23] are aimed at helping users to deal with the problem of information overload by facilitating access to relevant items. These systems attempt to generate a model of the user or user's task and apply diverse heuristics to anticipate what information may be of interest to the user. Recommender systems can be collaborative, which build on similarities between users with respect to the objects they interact with, or content-based, which build on similarities between potential recommendations and the objects that the user liked in the past. However, current approaches do not perform qualitative inference on the potential recommendations and are incapable of dealing with the defeasible nature of users’ preferences.

In this paper we present ARGUE N ET, a Web recommender system that addresses the above-described problems by integrating a traditional web search engine with a defeasible argumentation framework. ARGUE N ET evaluates and ranks search results based on the user’s declared preference criteria. The proposed system abstracts the user away from the obscure special syntax necessary to construct queries that reflect his or her preferences. As an alternative, user preferences are captured as a set of rules and facts, which can be made explicit in a more intuitive manner than by the use of query special commands. Such set of rules and facts will provide a knowledge base upon which a qualitative analysis of the results returned by a search engine will be performed.

The rest of the paper is structured as follows. In section 2 we present the fundamentals of our argumentation framework. Section 3 introduces ARGUE N ET, a framework that integrates traditional web search and defeasible argumentation. Next, in section 4, we present a worked example that illustrates how the proposed approach works. In Section 5 we briefly overview implementation issues and discuss related work. Finally, Section 6 closes with conclusions.

2. Modeling Defeasible Argumentation in DeLP

Defeasible argumentation [8, 22] has evolved in the last decade as a successful approach to formalize defeasible, commonsense reasoning. Argument-based applications have been developed in many areas, such as agent theory, knowledge engineering and legal reasoning [7, 21]. Defeasible logic programming (DeLP) [13] is a defeasible argumentation formalism based on logic programming. A defeasible logic program is a set $K = (\Pi, \Delta)$ of Horn-like clauses, where Π and Δ stand for sets of strict and defeasible knowledge, respectively. The set Π of strict knowledge involves strict rules of the form $p \leftarrow q_1, \ldots, q_k$ and facts (strict rules with empty body), and it is assumed to be non-contradictory. The set Δ of defeasible knowledge involves defeasible rules of the form $p \leftarrow q_1, \ldots, q_k$, which stands for “$q_1, \ldots, q_k$ provide a tentative reason to believe p.” The underlying logical language is that of extended logic programming, enriched with a special symbol “~” to denote defeasible rules. Both default and classical negation are allowed (denoted not and \sim, resp.). Syntactically, the symbol “~” is all that distinguishes a defeasible rule $p \leftarrow q_1, \ldots, q_k$ from a strict (non-defeasible) rule $p \leftarrow q_1, \ldots, q_k$. DeLP rules are thus Horn-like clauses to be thought of as inference rules rather than implications in the object language.

Deriving literals in DeLP results in the construction of arguments. An argument \mathcal{A} is a (possibly empty) set of ground defeasible rules that together with the set Π provide a logical proof for a given literal h, satisfying the additional requirements of non-contradiction and minimality.

Definition 1—Argument: Given a DeLP program \mathcal{P}, an argument \mathcal{A} for a query q, denoted $\langle \mathcal{A}, q \rangle$, is a subset of ground instances of defeasible rules in \mathcal{P} and a (possibly empty) set of default ground literals “not L”, such that:

1. there exists a defeasible derivation for q from $\Pi \cup \mathcal{A}$,
2. $\Pi \cup \mathcal{A}$ is non-contradictory (i.e., $\Pi \cup \mathcal{A}$ does not entail two complementary literals p and $\sim p$, nor does \mathcal{A} contain literals s and not s, for any p, s in \mathcal{P}), and
3. \mathcal{A} is minimal with respect to set inclusion.

An argument $\langle \mathcal{A}_1, Q_1 \rangle$ is a sub-argument of another argument $\langle \mathcal{A}_2, Q_2 \rangle$ if $\mathcal{A}_1 \subseteq \mathcal{A}_2$. Given a DeLP program \mathcal{P}, $\text{Args}(\mathcal{P})$ denotes the set of all possible arguments that can be derived from \mathcal{P}.

The notion of defeasible derivation corresponds to the usual query-driven SLD derivation used in logic programming, performed by backward chaining on both strict and defeasible rules; in this context a negated literal $\sim p$ is treated just as a new predicate name not p. Minimality imposes a kind of ‘Occam’s razor principle’ [24] on arguments: any superset \mathcal{A}' of \mathcal{A} can be proven to be ‘weaker’ than \mathcal{A} itself, as the former relies on more defeasible information. The non-contraduction requirement forbids the use of (ground instances of) defeasible rules in an argument \mathcal{A} whenever $\Pi \cup \mathcal{A}$ entails two complementary literals. It should be noted that non-contradiction captures the two usual approaches to negation in logic programming (viz. default negation and classic negation), both of which are present in DeLP and related to the notion of counterargument, as shown next.

Definition 2—Counterargument – Defeat: An argument $\langle \mathcal{A}_1, q_1 \rangle$ is a counterargument for an argument $\langle \mathcal{A}_2, q_2 \rangle$ iff

1. There is a subargument $\langle \mathcal{A}, q \rangle$ of $\langle \mathcal{A}_2, q_2 \rangle$ such that the set $\Pi \cup \{q_1, q\}$ is contradictory.
2. A literal not q_1 is present in some rule in \mathcal{A}_1.

A partial order $\preceq \subseteq \text{Args}(\mathcal{P}) \times \text{Args}(\mathcal{P})$ will be used as a preference criterion among conflicting arguments. An argument $\langle \mathcal{A}_1, q_1 \rangle$ is a defeater for an argument $\langle \mathcal{A}_2, q_2 \rangle$ if $\langle \mathcal{A}_1, q_1 \rangle$ counterargues $\langle \mathcal{A}_2, q_2 \rangle$, and $\langle \mathcal{A}_1, q_1 \rangle$ is preferred over $\langle \mathcal{A}_2, q_2 \rangle$ wrt. \preceq. For cases (1) and (2) above,
we distinguish between proper and blocking defeaters as follows:

- In case 2, the argument \(\langle A_1, q_1 \rangle \) will be called a proper defeater for \(\langle A_2, q_2 \rangle \) iff \(\langle A_1, q_1 \rangle \) is strictly preferred over \(\langle A, q \rangle \) wrt \(\subseteq \).

- In case 2, if \(\langle A_1, q_1 \rangle \) and \(\langle A, q \rangle \) are unrelated to each other, or in case 2, \(\langle A_1, q_1 \rangle \) will be called a blocking defeater for \(\langle A_2, q_2 \rangle \).

\[\square \]

Specificity [24] is used in DeLP as a syntax-based criterion among conflicting arguments, preferring arguments which are more informed or more direct [24, 25]. However, other alternative orders could also be used.

An argumentation line starting in an argument \(\langle A_0, Q_0 \rangle \) (denoted \(\lambda^{i(A_0,Q_0)} \)) is a sequence \(\{ \langle A_0, Q_0 \rangle, \langle A_1, Q_1 \rangle, \langle A_2, Q_2 \rangle, \ldots, \langle A_n, Q_n \rangle, \ldots \} \) that can be thought of as an exchange of arguments between two parties, a proponent (even-indexed arguments) and an opponent (odd-indexed arguments). Each \(\langle A_i, Q_i \rangle \) is a defeater for the previous argument \(\langle A_{i-1}, Q_{i-1} \rangle \) in the sequence, \(i > 0 \). In order to avoid fallacious reasoning, dialectics imposes additional constraints on such an argument exchange to be considered rationally acceptable in a program \(\mathcal{P} \).

- Non-contradiction: given an argumentation line \(\lambda \), the set of arguments of the proponent (resp. opponent) should be non-contradictory wrt \(\mathcal{P} \). Non-contradiction for a set of arguments is defined as follows: a set \(S = \bigcup_{i=1}^{n} \{ \langle A_i, Q_i \rangle \} \) is contradictory wrt \(\mathcal{P} \) iff \(\Pi \cup \bigcup_{i=1}^{n} A_i \) is contradictory.

- No circular argumentation: no argument \(\langle A_j, Q_j \rangle \) in \(\lambda \) is a sub-argument of an argument \(\langle A_i, Q_i \rangle \) in \(\lambda \), \(i < j \).

- Progressive argumentation: every blocking defeater \(\langle A_i, Q_i \rangle \) in \(\lambda \) is defeated by a proper defeater \(\langle A_{i+1}, Q_{i+1} \rangle \) in \(\lambda \).

The first condition disallows the use of contradictory information on either side (proponent or opponent). The second condition eliminates the “circular reasoning” fallacy. The last condition enforces the use of a stronger argument to defeat an argument which acts as a blocking defeater. An argumentation line satisfying the above restrictions is called acceptable, and can be proven to be finite [13].

Given a DeLP program \(\mathcal{P} \) and an initial argument \(\langle A_0, Q_0 \rangle \), the set of all acceptable argumentation lines starting in \(\langle A_0, Q_0 \rangle \) accounts for a whole dialectical analysis for \(\langle A_0, Q_0 \rangle \) (i.e., all possible dialogues rooted in \(\langle A_0, Q_0 \rangle \)), formalized as a dialectical tree.

Definition 3—Dialectical Tree: Let \(\mathcal{P} \) be a DeLP program, and let \(\langle A_0, Q_0 \rangle \) be an argument in \(\mathcal{P} \). A dialectical tree for \(\langle A_0, Q_0 \rangle \), denoted \(\mathcal{T}_{\langle A_0, Q_0 \rangle} \), is a tree structure defined as follows:

1. The root node of \(\mathcal{T}_{\langle A_0, Q_0 \rangle} \) is \(\langle A_0, Q_0 \rangle \).
2. \(\langle B', H' \rangle \) is an immediate children of \(\langle B, H \rangle \) iff there exists an acceptable argumentation line \(\lambda^{i(A_0,Q_0)} = \{ \langle A_0, Q_0 \rangle, \langle A_1, Q_1 \rangle, \ldots, \langle A_n, Q_n \rangle \} \) such that there are two elements \(\langle A_{i+1}, Q_{i+1} \rangle = \langle B', H' \rangle \) and \(\langle A_i, Q_i \rangle = \langle B, H \rangle \), for some \(i = 0, \ldots, n - 1 \).

\[\Box \]

Nodes in a dialectical tree \(\mathcal{T}_{\langle A_0, Q_0 \rangle} \) can be marked as undefeated and defeated nodes (U-nodes and D-nodes, resp.). A dialectical tree will be marked as an AND-OR tree: all leaves in \(\mathcal{T}_{\langle A_0, Q_0 \rangle} \) will be marked U-nodes (as they have no defeaters), and every inner node is to be marked as D-node iff it has at least one U-node as a child, and as U-node otherwise. An argument \(\langle A_0, Q_0 \rangle \) is ultimately accepted as valid (or warranted) wrt a DeLP program \(\mathcal{P} \) iff the root of its associated dialectical tree \(\mathcal{T}_{\langle A_0, Q_0 \rangle} \) is labeled as U-node.

Given a DeLP program \(\mathcal{P} \), solving a query \(q \) wrt \(\mathcal{P} \) accounts for determining whether \(q \) is supported by a warranted argument. Different doxastic attitudes are distinguished when answering that query \(q \) according to the associated status of warrant, in particular:

1. Believe \(q \) (resp. \(\sim q \)) when there is a warranted argument for \(q \) (resp. \(\sim q \)) that follows from \(\mathcal{P} \).
2. Believe \(q \) is undecided whenever neither \(q \) nor \(\sim q \) are supported by warranted arguments in \(\mathcal{P} \).

3. The ARGUENET Framework: Fundamentals

A fundamental problem addressed by web search engines is how to determine which web documents are relevant to a query \(q \). When providing a list of search results \(\{s_1, s_2, \ldots, s_n\} \) in response to a query \(q \), it is common to assume that the earlier a result appears in the list, the earlier it is shown on the screen and the more relevant for the user it is. This is specially problematic when thousands of results are available, so that a detailed analysis of the whole search space becomes extremely expensive.

Experienced users of search engines rely on the combination of different (mostly implicit) preference criteria to build and evaluate alternative hypotheses for filtering search results. In this context, meta-information associated with search results turns out to be particularly helpful, as search results are mostly links to HTML pages which have a number of associated features (e.g., file-name, timestamp or date in which the document was created, URL, etc.). In particular, the recent evolution of the Semantic Web has favored the incorporation of additional features to semantically characterize the content of web documents.

Consider for example a journalist who wants to search for news articles about the Iraq war. A query containing the terms news, iraq, and war will return thousands of search results. Our journalist may have some implicit, tentative knowledge that she could use to guide the search, such as:
2. E.g contradictory facts may be found on the web; a simple belief revision criterion is that those facts with newer timestamp are preferred over older ones.

Fig. 1. The ArgueNet Framework: Outline.

- She considers most news appeared in American and Iraqi newspapers as too biased with respect to the Iraq war.
- She thinks that the American newspaper “The New York Times” (NYT) is usually not biased and trustworthy with respect to the Iraq war.
- She considers trustworthy every journalist who never faked a report. However, she knows that John Doe, who works for the NYT, has faked news reports about the Iraq war.

The above preference criteria will help our journalist to classify some search results as potentially irrelevant (e.g., by skipping certain links associated with URLs corresponding to American and Iraqi newspapers) whereas some others would be deemed as particularly interesting (e.g., those links corresponding to the domain nyt.com). Note that preference criteria provide incomplete knowledge about the search domain. Since user preference criteria can be inconsistent, such kind of knowledge cannot be modeled through traditional rule-based approaches.

Our proposal is to model the user’s preference criteria in terms of a DeLP program \(\mathcal{P} \). A distinguished predicate name \(\text{rel} \) will be used for analyzing the relevance of every search result \(s_i \) with respect to the user’s preference criteria. The existence of a warranted argument \(\langle A, \text{rel}(s_i) \rangle \) built on the basis of \(\mathcal{P} \) will allow to conclude that \(s_i \) is a search result relevant to the user’s query. As stated before, for a given query \(q \) a typical search engine will return a list of (probably thousands of) search results \(S = \{s_1, s_2, \ldots, s_k\} \), and every search result \(s_i \) will be characterized by a piece of information \(\text{info}(s_i) \), in a number of associated features (meta-tags, filename, URL, etc.) can be identified. We assume that such features can be identified and extracted from \(\text{info}(s_i) \) by some specialized tool (see discussion in Section 5). Such features will be encoded as DeLP facts, extending the original program \(\mathcal{P} \) into a new program \(\mathcal{P}' \). A special operator \(\text{Revise} \) deals with possible inconsistencies found in \(S \) wrt \(\mathcal{P} \), ensuring \(\mathcal{P}' \) is not contradictory.\(^2\) Every search result \(s_i \in S \) will be then automatically analyzed in the context of \(\mathcal{P}' \) by solving the query \(\langle A, \neg \text{rel}(s_i) \rangle \) using the DeLP interpreter. We will classify the elements in the original list \(L \) of search results in three sets, namely:

- \(S^o \) (warranted search results): those search results \(s_i \) for which there exists at least one warranted argument supporting \(\text{rel}(s_i) \) based on \(\mathcal{P}' \).
- \(S^u \) (undecided search results): those results \(s_i \) for which there is no warranted argument for \(\neg \text{rel}(s_i) \) but there is not warranted argument for \(\sim \text{rel}(s_i) \) either on the basis of \(\mathcal{P}' \), and
- \(S^d \) (defeated search results): those results \(s_i \) such that there is a warranted argument supporting \(\sim \text{rel}(s_i) \) on the basis of \(\mathcal{P}' \).

Figure 1 presents an outline of the proposed approach. Note that the above classification has a direct correspondence with the doxastic attitudes associated with answers to DeLP queries. The final output presented to the user will be a sorted list \(L' \) in which the elements of \(L \) are ordered according to their epistemic status wrt \(\mathcal{P}' \) (e.g., first all search results warranted to be relevant, then all search results which are undecided wrt their relevance and finally all those search results which are warranted to be non-relevant according to the user’s preferences.) This process can be characterized in terms of the high-level algorithm shown in Fig. 2. We must remark that it is always possible to ensure that the computation of warrant cannot lead to contradiction [13]: if there exists a warranted argument \(\langle A, h \rangle \) on the basis of a DeLP program \(\mathcal{P} \), then there is no warranted argument \(\langle B, \sim h \rangle \) based on \(\mathcal{P} \).

4. A Worked Example

Consider again a journalist who is searching for news reports concerning the Iraq war. She has some preference

\[\begin{align*}
\text{ALGORITHM } & \text{SolveBrowserQuery} \\
\text{INPUT: } & \text{Query } q, \text{ DeLP program } \mathcal{P} \\
\text{OUTPUT: } & \text{List } L_{new} \{ \text{search results sorted according to } \mathcal{P} \} \\
\text{BEGIN} & \\
& \text{Let } L = [s_1, s_2, \ldots, s_k] \text{ be the output of solving query } q \\
& \text{using a web search engine.} \\
& \{L \text{ is the list of (the first } k \text{) results obtained from query } q \} \\
& \mathcal{P}_\text{search} = \{\text{facts encoding } \text{info}(s_1), \text{info}(s_2), \ldots, \text{info}(s_k)\}. \\
& \mathcal{P}' := \text{Revise } (\mathcal{P} \cup \mathcal{P}_\text{search}). \\
& \text{Initialize } S^o, S^u, \text{ and } S^d \text{ as empty sets.} \\
& \{S^o, S^u, \text{ and } S^d \text{ stand for the set of warranted as relevant, undecided and warranted as non-relevant results, resp.}\} \\
& \text{FOR EVERY } s_i \in L \\
& \text{DO} \\
& \text{Solve query } \text{rel}(s_i) \text{ using DeLP program } \mathcal{P}' \\
& \text{IF } \text{rel}(s_i) \text{ is warranted } \text{THEN add } s_i \text{ to } S^o \\
& \text{ELSE} \\
& \text{IF } \sim \text{rel}(s_i) \text{ is warranted } \text{THEN add } s_i \text{ to } S^u \\
& \text{ELSE add } s_i \text{ to } S^d \\
& \text{Return } L_{new} = [s^o_1, s^o_2, \ldots, s^o_i, s^u_1, s^u_2, \ldots, s^u_j, s^d_1, s^d_2, \ldots, s^d_k]. \\
& \text{END}
\end{align*}\]
Combining Argumentation and Web Search Technology: Towards a Qualitative Approach for Ranking Results

Criteria which could help her guide the search, namely: 1) she always considers relevant the newspaper reports written by Bob Doll; 2) she usually considers relevant the reports written by trustworthy journalists; 3) Reports written by trustworthy journalists which are out of date are usually not relevant; 4) Knowing that a journalist has not faked reports provides a tentative reason to believe he or she is trustworthy. By default, every journalist is assumed to be trustworthy; 5) Iraqi and American viewpoints on the war are usually considered biased; 6) The New York Times is an American newspaper which she usually considers non-biased; 7) John Doe is known to have faked a report. We will assume that our journalist wants to make use of this incomplete and potentially inconsistent knowledge to guide her search for articles.

The above tentative rules and facts can be modeled in terms of a DeLP program P shown in Fig. 3. Note that some rules in P rely on “built in” predicates computed elsewhere and not provided by the user (e.g., determining the country of origin corresponding to a specific web domain can be found querying Internet directory services such as WHOIS).

Suppose that the query containing the terms news, iraq, and war is presented to a traditional search engine, which returns a list of search results $L = \{ s_1, s_2, s_3, s_4 \}$. Most of these results will be associated with news articles and will contain a number of features (e.g., author, date, URL, etc.). Such features can be encoded as a collection of DeLP facts as follows:

\[
\begin{align*}
rel(X) & \leftarrow \text{author}(X,A), \text{trust}(A). \\
\sim rel(X) & \leftarrow \text{author}(X,A), \text{trust}(A), \text{outdated}(X). \\
\text{trust}(A) & \leftarrow \text{not } \text{faked}_\text{news}(A). \\
\sim \text{rel}(X) & \leftarrow \text{address}(X, U), \text{biased}(U). \\
\text{biased}(U) & \leftarrow \text{iraq}(U). \\
\text{biased}(U) & \leftarrow \text{american}(U). \\
\sim \text{biased}(U) & \leftarrow \text{domain}(U), D = \text{"nyt.com"}. \\
\text{rel}(X) & \leftarrow \text{author}(X, \text{bob}, \text{doll}). \\
\text{outdated}(X) & \leftarrow \text{date}(X,D), \text{curr}_\text{date}(\text{Today}), (\text{Today} - D) > 100. \\
\text{iraq}(X) & \leftarrow [\text{Computed elsewhere}]. \\
\text{american}(X) & \leftarrow [\text{Computed elsewhere}]. \\
\text{domain}(U), D & \leftarrow [\text{Computed elsewhere}]. \\
\text{curr}_\text{date}(T) & \leftarrow [\text{Computed elsewhere}]. \\
\text{faked}_\text{news}(\text{john.doe}) & \leftarrow \\
\end{align*}
\]

Fig. 3. A DeLP program modeling the preferences of a journalist.

We can now analyze s_1, s_2, s_3 and s_4 in the context of the user’s preference theory about the search domain by considering the DeLP program $P = P \cup \text{Facts}$, where Facts denotes the set corresponding to the collection of facts given above. For each s_i, the query $\text{rel}(s_i)$ will be analyzed wrt this new program P'.

Consider the case for s_1. The search for an argument for $\text{rel}(s_1)$ returns $\langle A_1, \text{rel}(s_1) \rangle$: s_1 should be considered relevant since it corresponds to a newspaper article written by John Doe who is considered a trustworthy author (note that every journalist is considered to be trustworthy by default.) Here we have $A_1 = \{ \text{rel}(s_1) \urcorner \text{author}(c_1, \text{john.doe}), \text{trust}(\text{john.doe}) \urcorner \text{trustworthy}_\text{author} \urcorner \text{not } \text{faked}_\text{news}(\text{john.doe}) \}$. The DeLP inference engine will then search for defeaters for $\langle A_1, \text{rel}(s_1) \rangle$. A defeater $\langle A_2, \sim \text{rel}(s_1) \rangle$ will be found: s_1 is not relevant as it comes from an American newspaper, which is by default assumed to be biased about Iraq war. Here we have $A_2 = \{ \sim \text{rel}(c_1), \urcorner \text{address}(c_1, \text{"nyt.com"}), \text{biased}(\text{"nyt.com"}) \urcorner \text{biased}(\text{"nyt.com"}) \urcorner \text{american}(\text{"nyt.com"}) \}$. However, there exists in its turn another defeater $\langle A_3, \sim \text{biased}(\text{"nyt.com"}) \rangle$ for $\langle A_2, \sim \text{rel}(s_1) \rangle$, reinstating the first argument $\langle A_1, \text{rel}(s_1) \rangle$: Usually articles from the NYT are not biased. Here we have $A_3 = \{ \sim \text{biased}(\text{"nyt.com"}), \urcorner \text{domain}(\text{"nyt.com"}), \text{"nyt.com"}, \}$. Note that the definition of dialectical tree (Def. 3) does not allow the use of $\langle A_1, \text{rel}(s_1) \rangle$ to defeat $\langle A_2, \sim \text{rel}(s_1) \rangle$, as this would imply falling into fallacious, circular argumentation. Note however that $\langle A_1, \text{rel}(s_1) \rangle$ has another defeater besides $\langle A_2, \sim \text{rel}(s_1) \rangle$, namely $\langle A_4, \text{faked}_\text{news}(\text{john.doe}) \rangle$, with $A_4 = \emptyset$. No other arguments need to be considered. The resulting dialectical tree rooted $\langle A_1, \text{rel}(s_1) \rangle$ as well as its corresponding marking is shown in Fig. 4(a) (left).

![Fig. 4. Dialectical trees associated with (a) $\langle A_1, \text{rel}(s_1) \rangle$ and $\langle A_2, \sim \text{rel}(s_1) \rangle$; (b) $\langle B_1, \text{rel}(s_1) \rangle$ and $\langle B_2, \sim \text{rel}(s_2) \rangle$; (c) $\langle C_1, \text{rel}(s_1) \rangle$ and (d) $\langle D_1, \text{rel}(s_1) \rangle$.]

The root node is marked as D-node (defeated), which implies that the argument $\langle A_1, \text{rel}(s_1) \rangle$ is not warranted. Carrying out a similar analysis for $\sim \text{rel}(s_1)$ results in the dialectical tree shown in Fig. 4(a) (right). The root

3. For the sake of clarity, we use semicolons to separate elements in an argument $A = \{ e_1 : e_2 : \ldots : e_k \}$.

Vol.9 No.1, 2005 Journal of Advanced Computational Intelligence and Intelligent Informatics 57
node $\langle A_2 \sim \text{rel}(s_1) \rangle$ is marked as $D - \text{node}$. There are no other candidate arguments to consider; hence s_1 is deemed as undecided.

Similarly we can analyze the case of s_2. An argument $\langle B_1, \text{rel}(s_2) \rangle$ can be built supporting the conclusion $\text{rel}(s_2)$, with $B_1 = \{ \text{rel}(s_2) \sim \text{author}(s_2), \text{trust}([\text{jen oldie}]) ; \text{trust}([\text{jen oldie}]) \sim \text{not faked news}(\text{jen oldie}) \}$. This argument has a proper defeater $\langle B_2, \sim \text{rel}(s_2) \rangle$ which defeats $\langle B_1, \text{rel}(s_2) \rangle$, with $B_2 = \{ \text{rel}(s_2) \sim \text{author}(s_2), \text{trust}([\text{jen oldie}]), \text{outdated}(s_2) ; \text{trust}([\text{jen oldie}]) \sim \text{not faked news}(\text{jen oldie}) \}$. There are no more arguments to consider, and $\langle B_1, \text{rel}(s_2) \rangle$ is deemed as non warranted (the resulting marked dialectical tree is shown in Fig.2(b) (left)). The analysis of $\sim \text{rel}(s_2)$ results in an single argument. Consequently, its associated dialectical tree has a single node $\langle B_2, \sim \text{rel}(s_2) \rangle$ and it is warranted.

Following the same line of reasoning used in the case of s_1 we can analyze the case of s_2. An argument $\langle C_1, \text{rel}(s_2) \rangle$ can be built supporting the conclusion $\text{rel}(s_2)$ (a newspaper article written by Jane Truth is relevant as she can be assumed to be a trustworthy author). A defeater $\langle C_2, \sim \text{rel}(s_2) \rangle$ will be found: s_2 is not relevant as it comes from an American newspaper, which by default is assumed to be biased about Iraq war. But this defeater in its turn is defeated by a third argument $\langle C_3, \text{biased}(s_2) \rangle$. The resulting dialectical tree for $\langle C_1, \text{rel}(s_2) \rangle$ is shown in Fig.4(c) (left). The original argument $\langle C_1, \text{rel}(s_2) \rangle$ can be thus deemed as warranted.

Finally let us consider the case of s_3. There is an argument $\langle D_1, \text{rel}(s_3) \rangle$ with $D_1 = \emptyset$, as $\text{rel}(s_3)$ follows directly from the strict knowledge in \mathcal{P}. Clearly, there is no defeater for an empty argument (there is no defeasible knowledge involved). Hence $\text{rel}(s_3)$ is warranted. The associated dialectical tree is shown in Fig.4(d).

Applying the criterion given in the algorithm shown in Fig.2, the initial list of search results $\{ s_1, s_2, s_3, s_4 \}$ will be shown as $\{ s_3, s_4, s_1, s_2 \}$ (as $\langle C_3, \text{rel}(s_2) \rangle$ and $\langle D_1, \text{rel}(s_1) \rangle$ are warranted. $\langle A_1, \text{rel}(s_1) \rangle$ is undecided and $\langle B_2, \sim \text{rel}(s_2) \rangle$) is warranted (i.e., s_2 is warranted to be a non-relevant result).

5. Implementation Issues and Related Work

Performing defeasible argumentation is a computation-ally complex task. An abstract machine for an efficient implementation of DeLP has been developed, based on an extension of the WAM (Warren’s Abstract Machine) for Prolog. An interpreter of DeLP was also implemented in Prolog. Several features leading to the efficient implementation of DeLP have also been recently studied, mainly those related to comparing conflicting arguments by specificity [25] and to pruning the search space [9]. In particular, the search space associated with dialectical trees is reduced by applying $\alpha - \beta$ pruning. Thus, in Fig.4(a), the left branch of the tree does not need to be computed if the right branch has been computed first (as in that case the root node can be already deemed as ultimately defeated). Recent research has led to extending DeLP to incorporate vague knowledge for reasoning under uncertainty [10].

ARGUENET operation relies on the user declaring his or her preference criteria, which the system codifies as facts and rules. This process could be complemented by the application of techniques for defeasible rule discovery as described in [14]. Another important issue is the need to extract relevant features from the search results and to codify them as DeLP facts. Web documents are usually represented using HTML, a document markup language that uses predefined tags for presentation purposes and not to convey semantics. In spite of that, HTML tags can be usefully exploited to extract meaningful content [3, 11, 16]. The emergence of XML and other markup languages as standards for data representation on the Web contributes to further simplify the extraction of facts from web pages.

Work on query languages for semistructured data (e.g., [1, 17, 19]) is mostly based on the metaphor of the Web as a database. Some of these approaches provide rich syntax and semantics that allow for expressing powerful queries and to reuse user’s partial knowledge but do not attempt to perform any kind of qualitative inference to support the returned answers.

Our system operates on top of a conventional search engine, providing a powerful abstraction for solving queries based on a user’s preference criteria. In that sense, our proposal shares motivations with the Internet agents called SoftBots [12], which, upon a user’s request, use planning technology to select Web services by taking into consideration a person’s declared interest. Many personalized Web recommender systems that operate on top of Internet services have been proposed over the past years (e.g., [2, 18, 20]). Existing Web recommender tools take into account the user’s interests (either declared by the user or conjectured by the system) to rank or filter web pages, but differ from our proposal in that they do not attempt to perform a qualitative analysis to warrant recommendations.

More ambitious projects to facilitate automatic qualitative reasoning on the Web rely on the realization of the Semantic Web vision [4]. The content of the Semantic Web is expected to be meaningful and tractable by autonomous systems, which will facilitate the implementation of qualitative reasoning tools. However, the concretization of such a vision is still underway. A recent discussion on issues and perspectives of adding deduction capability to search engines through the use of fuzzy logic is presented in [26]. As discussed in that presentation, a web question-answering system with deductive capabilities is still far from becoming a reality.
6. Conclusions

Search engine technology has evolved rapidly in the last years, leading to very efficient and reliable algorithms. Nevertheless, current approaches still have serious limitations due to the absence of qualitative criteria for solving search queries. More importantly, they do not have a clean underlying model, making it hard to provide users with a clear explanation of the factors and procedures that led the system to come up with certain ranking of search results. As a consequence, serious trustworthiness issues may arise, especially in those cases when business interests are involved.

In this paper we have presented an integrated framework based on defeasible argumentation that exploits qualitative information to rank the results returned by a search engine. The proposed system preserves the simplicity of traditional web search engines for posing queries, while abstracting the user away from special syntax to reflect his or her preferences.

We contend that the evolution of recommender systems will result in efficient and reliable web search environments, where both quantitative and qualitative analysis will play important roles. We believe our proposal is a realistic and do-able approach to help fulfill this long-term goal.

Acknowledgements

This research was partially supported by CONICET (Argentina), projects CICYT TIC2001-1577-C03-03 and TIC2003-00950, and Ramón y Cajal Program (Ministry of Science and Technology, Spain). Funding for this publication was granted by the Viceredotar de Recerca i Innovació, University of Lleida.

References:

Name: Carlos Iván Chesñevar
Affiliation: Department of Computer Science, University of Lleida
Address: C/Jaume II, 69 – 25001 Lleida, Spain
Brief Biographical History:
1996-2001 MSc and Ph.D. Degree in CS from Universidad Nacional del Sur (Bahía Blanca, Argentina)
1996- Full-time professor at the Universidad Nacional del Sur (On postdoctoral leave since July 2003)
2003- Full-time researcher at the University of Lleida, Spain (supported by the “Ramón y Cajal” Program (Ministry of Science and Technology of Spain))
Main Works:
Membership in Learned Societies:
Member of AEPIA (Spanish Association for Artificial Intelligence)

Name: Ana Gabriela Maguitman
Affiliation: Computer Science Department, Indiana University
Address: Bloomington, IN 47405-7104, USA
Brief Biographical History:
1997 MSc Degree in CS from Universidad Nacional del Sur (Bahía Blanca, Argentina)
2004 Ph.D. Degree in CS from Indiana University (Bloomington, USA) (expected)
1999-2000 Associate Instructor at the Computer Science Department of Indiana University, Bloomington
2000- Research Assistant at the Computer Science Department of Indiana University, Bloomington
Main Works:
Membership in Learned Societies:
Member of AAAI (American Association for Artificial Intelligence)