
Chapter 10

Computational Argumentation for Supporting

Learning Processes: Applications and Challenges

Carlos Chesñevar1, César A. Collazos2 and Ana Maguitman1

1Instituto de Ciencias e Ingeniería de la Computación (ICIC CONICET UNS)

Departamento de Ciencias e Ingeniería de la Computación (DCIC UNS)

Universidad Nacional del Sur – Campus Palihue

San Andrés 800 - 8000 Bahía Blanca, Argentina

e-mail: {cic,agm}@cs.uns.edu.ar

2Universidad del Cauca - Popayán, Colombia

e-mail: collazos@unicauca.edu.co

Abstract.

This book chapter analyzes different applications and challenges of computational argumentation

for modeling different aspects of learning processes. Some of the topics included are argument-

based recommender systems for educational purposes; argument-based shared knowledge for

computer-supported collaborative learning (CSCL) and argument-based opinion mining for

eliciting students’ knowledge based on information items corresponding to different topics of

study. We also identify and discuss salient challenges associated with argumentation in the

current state of the art. The chapter is organized to be self-contained, including an overview of

the key elements in computational argumentation. Our contribution is intended to provide a

reference point for researchers working on intelligent techniques for educational processes who

are interested in incorporating argumentation as a metaphor for modeling intelligent decision

making in Intelligent Tutoring Systems (ITS), Computer-Supported Collaborative Learning

(CSCL) systems, and other related areas.

Keywords: Argumentation, Intelligent Tutoring Systems, Computer-Supported Collaborative

Learning, Opinion Mining, Recommender Systems, Shared Knowledge Awareness, Learning

systems.

1.1 Introduction

Computational argumentation is a discipline that has been gaining increasing

importance and wider audiences over the last decades, mainly as a vehicle for

Chesñevar, C., Collazos, C. A., & Maguitman, A. (2022). Computational Argumentation for
Supporting Learning Processes: Applications and Challenges. Handbook on Intelligent Techniques in
the Educational Process, 161-183.

2

facilitating rationally justifiable decision making when handling incomplete and

potentially inconsistent information. Argumentation provides a sound model for

dialectical reasoning, which underlies discussions or opinion confrontation in social

networks. In Collaborative systems, argumentation is an important aspect to help

problem-solving situations, considering the cognitive processes of critical information

checking, argument elaboration and the taking of multiple perspectives. Argumentation

systems are increasingly being considered for applications in developing software

engineering tools, constituting an important component of multi-agent systems for

negotiation, problem solving, shared understanding, and the fusion of data and

knowledge. Such systems implement a dialectical reasoning process by determining

whether a proposition follows from certain assumptions, analyzing whether some of

those assumptions can be disproved by other assumptions in our premises. In this way,

an argumentation system provides valuable help to analyze which assumptions from

our knowledge base are giving rise to inconsistency and which assumptions are

harmless.

This chapter is structured as follows. In Section 1.2 we summarize the main elements

which characterize computational models of argument (such as argument,

counterargument, defeat, and the notion of warranted conclusion). We will introduce

the basics of Defeasible Logic Programming [1], which will be used for subsequent

examples. Then, in Section 1.3 we focus on argument-based recommender systems, a

sub-area that has received particular attention in the last years. We discuss potential

applications of these recommenders for educational purposes. Section 1.4 discusses an

alternative approach to argumentation based on opinion mining. We show that this

particular view of argumentation processes can help enhance learning processes by

identifying reasons pro and con in a very intuitive way. Section 1.5. considers the notion

of shared knowledge awareness in the context of argumentation. We show how multiple

knowledge bases (associated with different students) can be suitably integrated for

collaborative problem solving. Finally, Section 1.6 presents the conclusions and

discusses some avenues for future research.

1.2 Argumentation in a nutshell

Argumentation is an important aspect of human decision making. In many situations of

everyday life, when faced with new information, people need to ponder its

consequences, in particular when attempting to understand problems and come to a

decision. Argumentation systems [1,2,3,4] are increasingly being considered for

applications in developing software engineering tools, constituting an important

component of multi-agent systems for negotiation, problem solving, and the fusion of

data and knowledge. Such systems implement a dialectical reasoning process by

determining whether a proposition follows from certain assumptions, analyzing

whether some of those assumptions can be disproved by other assumptions in our

premises. In this way, an argumentation system provides valuable help to analyze which

assumptions from our knowledge base give rise to inconsistencies and which

assumptions are harmless.

3

In defeasible argumentation, an argument is a tentative (defeasible) proof for reaching

a conclusion. Arguments may compete, rebutting each other, so a process of

argumentation is a natural result of the search for arguments. Adjudication of

competing arguments must be performed, comparing arguments in order to determine

what beliefs are ultimately accepted as warranted or justified. Preference among

conflicting arguments is defined in terms of a preference criterion which establishes a

partial order “≼ " among possible arguments; thus, for two arguments A and B in

conflict, it may be the case that A is strictly preferred over B (A ≻ B), that A and B are

equally preferred (A ≽ B and A ≼ B) or that A and B are not comparable with each

other. For the sake of example, let us analyze the following example about real-world

knowledge on spiders. Consider the following sentences:

(1) If something looks dead, it is usually dead;

(2) If something moves when touched, it is usually not dead;

(3) If a spider is dead, it is usually not dangerous.

(4) If something is a spider, it is usually dangerous.

(5) Black widow is a spider.

(6) Black widow moves when touched.

(7) Black widow looks dead.

Sentences in italics correspond to defeasible rules (rules which are subject to possible

exceptions). Statements (5), (6), and (7) correspond to facts (strict information). Note

that different arguments can be constructed:

1. Argument A (based on rules 4 & fact 5): Black widow is a spider. Spiders are usually

dangerous. Therefore, black widow is dangerous.

2. Argument B (based on rule 1,3 and facts 5,7): Black widow is a spider. Black widow

looks dead. If something looks dead, it is usually dead. If a spider is dead, it is usually

not dangerous. Therefore, Black widow is not dangerous.

3. Argument C (based on rule 2, fact 6). Black widow moves when touched. If

something moves when touched, it is usually not dead. Therefore Black widow is not

dead.

In this particular situation, different arguments arise that cannot be accepted

simultaneously (as they reach contradictory conclusions). Note that argument B seems

rationally preferable over argument A, as it is based on more specific information. As

a matter of fact, specificity is commonly adopted as a syntax-based criterion among

conflicting arguments, preferring those arguments which are more informed or more

direct [1]. In this particular case, if we adopt specificity as a preference criterion,

argument B is justified, whereas A is not (as it is defeated by B). The above situation

can easily become much more complex, as an argument may be defeated by a second

argument (a defeater), which in turn can be defeated by a third argument, reinstating

the first one. As a given argument might have many defeaters, the above situation

4

results in a tree-like structure, rooted in the first argument at issue, where every

argument in a branch (except the root) defeats its parent (see Figure 1(c)).

Defeasible Logic Programming: implementing argumentation as a programming

language

Defeasible Logic Programming (DeLP) [1] is a logic-based programming language for

modeling incomplete knowledge and providing argument-based inference.1 It has been

applied in different contexts, such as multi-agent reasoning [5], recommender systems

[6,7,8,9], among others. As most computational argumentation systems, DeLP relies

on two kinds of knowledge: strict and defeasible knowledge. Strict knowledge

corresponds to the knowledge that is certain, such as facts about the world or

mathematical truths (e.g. “all men are mortal”). The strict knowledge is consistent, i.e.

no contradictory conclusions can be derived from it. On the other hand, defeasible

knowledge corresponds to that knowledge which is tentative, modeled through “rules

with exceptions” (defeasible rules) of the form “if P then usually Q” (e.g., “if

something is a bird, it usually flies”). Such rules model our incomplete knowledge

about the world, as they can have exceptions (e.g., a penguin, a dead bird, etc.).

Syntactically, a special symbol (⤙) is used to distinguish “defeasible” rules from

logical implications (←).

Argumentation systems like DeLP allow the user to define a knowledge base involving

strict and defeasible knowledge. An argument A for a claim c is basically some

“tentative proof” (a derivation using a non-empty set of defeasible information) for

concluding c from the knowledge base (DeLP program). Arguments must additionally

satisfy the requirement of consistency (an argument cannot include contradictory

propositions) and minimality (by not including repeated or unnecessary information).

Conflicting arguments may emerge in DeLP: an argument A attacks another argument

B whenever both of them cannot be accepted at the same time, as that would lead to

contradictory conclusions. Arguments are on their turn compared with each other using

a modular criterion (typically specificity), so that it can be established when an

argument defeats another.

Note that the notion of defeat among arguments may lead to complex “cascade”

situations: an argument A may be defeated by an argument B, which in turn may be

defeated by an argument C, and so on. Besides, every argument involved may have on

its turn more than one defeater. Argumentation systems allow us to determine when a

given argument is considered as ultimately acceptable with respect to the knowledge

we have available by means of a dialectical analysis, which takes the form of a tree-

like structure called dialectical tree. The root of the tree is a given argument A

supporting some claim, and children nodes for the root are those defeaters B1, B2, ... Bk

for A. The process is repeated recursively on every defeater Bi, until all possible

arguments have been considered. Leaves are arguments without defeaters. Some

1 For an in-depth treatment of DeLP and its features the reader is referred to [1].

5

additional restrictions apply (e.g. the same argument cannot be used twice in a path, as

that would be fallacious and would lead to infinite paths).

Figure 1(a) illustrates how a DeLP program for the spider example can be formulated.

Note that the symbol “ ~ “ stands for strict negation (thus, ~dead(X) means “X is not

dead”). In this sample DeLP code “bw” stands for “black widow”. The DeLP

programming language allows to make queries such as “dangerous(bw)” (standing for

“is black widow dangerous?”), which prompts the computation of an argument

supporting the query. The argument A is found (since bw is a spider, it should be

considered dangerous by default). Additionally, a defeater argument B is found which

attacks A (black widow is not dangerous as it looks dead), which is on its turn defeated

by a third argument C (black window moves when touched, and therefore it is not

dead!). All this dialectical process is carried out automatically by the DeLP inference

engine (associated arguments can also be displayed using a GUI interface). The

associated dialectical analysis is shown in Figure 1(b). Arguments with no successful

attacks are deemed as ultimately accepted (e.g. argument C). An inner argument is

deemed as ultimately accepted if all its attackers are not accepted; otherwise, the inner

argument is defeated. Complex situations might arise (e.g. Figure 1(c)), which are

solved by the DeLP inference engine.

Figure 1. (a) DeLP program for the spider example. (b) The original argument is

deemed as “accepted”. (c) The dialectical analysis might be complex, resulting in a

dialectical tree with several nodes representing arguments and attack relationships

among them.

6

1.3 Argument-based Recommendation in Learning Environments

The Internet is one of the main sources of information and resources for students to

explore or learn practically any topic. However, identifying the most useful information

or resources can be a difficult task for a student. One of the main difficulties is that

there is an overwhelming amount of potentially useful material for learning nearly any

topic. Another difficulty lies in the fact that students might not be able to pose

appropriate queries to search for relevant content as they may not be entirely familiar

with the topic being or to be learned.

Recommender systems can alleviate these problems by providing meaningful

recommendations to students. Recommendation in learning environments can be

exploited from different perspectives. One approach consists in identifying and

suggesting learning objects (e.g., documents, videos, instructional games, etc.) for a

specific learning objective. Learning objects are characterized by metadata such as

educational resource type, interactivity type and level, content, description, language,

and format. When confronted with a problem requiring procedural knowledge (i.e. a

sequence of steps to be carried out to solve a task), recommender systems can play a

useful role by providing suggestions and hints (e.g. by pointing out possible alternatives

or by issuing a warning when a wrong decision has been made). Also, recommenders

can be useful during the knowledge acquisition process itself, by engaging learners in

specific activities that promote declarative knowledge construction through the

exploration of both domain-specific and domain-general knowledge.

A recommender system can adopt a task modeling approach, a user modeling approach,

or a combination of both. A task is a piece of work required to achieve an objective.

Tasks are usually associated with the need to access information to solve problems,

evaluate content, construct meaning, create knowledge and make decisions. A task-

based recommender system that supports a student learning process typically monitors

the student’s work, analyzes its content, seeks for similar content or other students that

completed similar tasks, generates recommendations, and incrementally refines the

recommendations based on the student’s progress on the task at hand and the student’s

reaction to the suggested resources. Task representations need to be continuously

updated as students change their focus during learning activities. This can be captured

by analyzing a variety of contextual interaction patterns resulting from clicks, dwell

time, cursor movement, scrolling, etc. A learning resource that proved to be useful for

a learning task is likely to be useful for a similar task. Hence being able to model tasks

and determine when two tasks are similar is key to develop a task-based recommender.

A learning task can be modeled by the student’s log activity, documents being read or

edited, web pages being visited, milestone tasks being accomplished, among other

items [10]. Task representations can be stored in a repository and associated with

different kinds of resources (learning objects, procedural knowledge, and domain

knowledge) that proved to be useful during those particular tasks.

Different from task models, which are changeable, user models are more persistent.

Students can be modeled by their declared interest, their long-term browsing history,

7

capabilities, social network communities, and social media interactions, among other

features. In [11] various aspects are considered to model the student profile, such as

learning style, educational level, preferred language, preferred topic, and preferred

format. By modeling students, it is possible to compute similarity scores among

students, and hence to recommend items to a target student based on how useful those

items proved to be in the past to students with a similar profile.

The most common variants of recommender systems are content-based [12] and

collaborative filtering [13]. Content-based recommender systems rely on a

representation of a user or an item to find items that match with the user’s

recommendation needs. For instance, a content-based recommendation for a student

currently learning a specific topic in biology requires representing the specific topic or

the knowledge the student currently has or seeks to have about the topic to identify

material similar to these representations. On the other hand, collaborative filtering

algorithms rely on past user’s behavior to find other users with similar behavior. The

basic idea of a collaborative filtering approach is to provide item recommendations

based on those items that were useful to or were liked by similar users. For instance, by

modeling a student’s skill, it may be possible to identify other students with similar

skills to recommend material that proved to be useful to those similar students in the

past.

Most existing recommenders are based on machine learning and information retrieval

algorithms. As indicated in the literature [6,7], these approaches are unable to

effectively provide informed explanations of the reasons behind a given

recommendation. Also, these approaches do not naturally support the kind of analysis

of actions and interactions that are crucial in any learning process.

Incorporating Argumentation to Recommend Learning Resources

Argument-based recommenders can be applied to overcome some of the limitations of

traditional recommendation systems in learning environments. Content- and

collaborative-based recommender systems that use task-modeling or user-modeling

approaches can be enhanced by incorporating argumentation technologies, to provide

reasoned recommendations and facilitate the exploration of relevant learning resources

through a dialectic process. Since the students will receive both a recommendation and

a reason supporting it, they will have more confidence in the presented results and they

can give the system explicit feedback that can help guide the recommendation process.

The widespread availability of learning resources repositories, coming from different

sources and accessed by students with mixed backgrounds, perspectives, and learning

abilities offers new opportunities to create argument-based recommendation services.

These services can take advantage of the diverse community of students accessing the

stored learning resources to implement collaborative-based recommenders. Developing

an algorithm for recommending learning resources is challenging because it requires

combining many, sometimes conflicting aspects. For instance, a resource may be useful

for learning a physics topic for a student with a good mathematics background but it

may not be useful for someone who has not developed a good background in

8

mathematics yet. In light of the defeasible nature of students’ information needs in

learning environments, argumentation is an attractive technology to explore and revise

potential recommendations, by generating suggestions of learning resources based on

items that proved to be useful in the past during similar tasks and adapting them to the

target student.

During procedural knowledge acquisition, students typically create and test solutions

in shared learning environments and discuss their potential solutions with teachers and

other students while carrying out learning tasks. The creation and discussion could be

naturally integrated with a collective dialectic process that provides a context to let

learners actively explore different ideas and positions. An argument-based

recommender that guides this process will foster the generation of ideas and debate.

Another natural way in which argumentation can help enhance the recommendation of

general and domain-specific knowledge is by involving the student in an argumentation

process, either with the recommendation system or with other students. During

declarative knowledge acquisition, an argument-based recommender will advise the

student on which areas to cover, to increase the effectiveness of the learning process. It

can also guide students in the process of engaging in specific discourse activities, to

express their viewpoints and also to react to other students’ perspectives.

Figure 2: Argument-based recommender systems in the context of educational

processes from a high-level perspective

Figure 2 provides a general picture of how argumentation can be integrated into the

recommendation process in a learning environment. Based on a student’s current task,

similar stored past tasks can be retrieved. As discussed above, stored past tasks will

typically be associated with a variety of learning resources, which may include learning

objects of different types (e.g., manuals, videos, instructional games, etc.), as well as

9

with procedural and declarative knowledge that proved to be useful for the associated

tasks in the past. Also, based on the student profile it is possible to retrieve the profiles

of other similar students and those learning resources that proved to be useful to those

students in the past. Finally, an argument-based approach can be taken to revise, adapt

and integrate information coming from similar students and tasks, resulting in

recommendations of potentially useful learning resources. We present next a case

study illustrating how an argument-based recommendation approach based on

Defeasible Logic Programming can be applied in a learning scenario.

A Case Study: Using Defeasible Logic Programming to Model Recommendations

about Students’ Learning Resources

The process for generating recommendations of learning resources by an argument-

based recommender is different from the process adopted by most of the existing

recommenders. However, they share the requirement of having access to prior

knowledge about a collection of students, tasks, and learning resources, which can be

codified as facts of a DeLP program, as illustrated in Figure 3. Facts provide

information about the students, tasks, and resources being modeled. Also, rules can be

defined to determine if two students or two tasks are similar. To define such rules,

similarities between students and tasks can be calculated by applying probabilistic

latent semantic analysis [14] or matrix factorization [15], among other techniques.

Finally, the DeLP program will contain a set of postulates that describe the conditions

under which a learning resource should be recommended to a given student. For

instance, a resource is typically recommended to a student if the student likes the

resource type. However, even if the student likes the resource type, the resource will

not be recommended if there is evidence that the resource was not useful to a similar

student in the past. On the other hand, a resource will be recommended if it was useful

for a task similar to the current one, albeit it was not useful to a similar student. An

additional level of specificity that distinguishes between tasks for which a student finds

a resource useful or not could be added if this information is available. This way, the

argumentative process will deal with general facts and more specific facts that may be

in conflict.

10

Facts about resources and their types, whether the resources were useful for students or tasks

and whether a resource type is liked or disliked by a student

resource_type(r1, video)

resource_type(r2, manual)

resource_type(r3, instructional_game)

useful_for_task(t1, r1)

useful_for_task(t1, r2)

useful_for_task(t1, r3)

useful_for_student(sam, r1)

useful_for_student(sam, r2)

~useful_for_student(sam, r3)

likes_resource_type(peter, video)

likes_resource_type(peter, instructional_game)

dislikes_resource_type(peter, manual)

Strict rules determining whether two students or two tasks are similar

similar_student(S1, S2) ← [Computed elsewhere]

similar_task(T1, T2) ← [Computed elsewhere]

Defeasible rules (commonsense knowledge) defining the cases for which resource R should be

recommended to student S during task T

recommend(S, T, R) ⤙ resource_type(R, RT), likes_resource_type(S, RT)

~recommend(S,T,R) ⤙ resource_type(R, RT),likes_resource_type(S, RT),

 similar_student(S1, S2), ~useful_for_student(S2 ,R)

recommend(S,T,R) ⤙ resource_type(R,RT), likes_resource_type(S,RT), similar_student(S,S1),

 ~useful_for_student(S1,R),similar_task(T,T1), useful_for_task(T1,R)

Figure 3: A sample DeLP program for modeling recommendations about resources for

students

As discussed in section 1.2, rules in a DeLP program are combined to support or reject

a conclusion by building arguments. Figure 4 shows the arguments that have been

computed to determine whether resource r2 should be recommended to Peter while he

is completing task t1. In this example, the root argument of the dialectical tree is

recommend(peter, t1 ,r2), which turns out to be defeated and hence we have no reason

to believe that Peter will benefit from resource r2 while completing task t1.

11

Figure 4: A sample dialectical tree associated with the query

“recommend(peter,t1,r2)”, where the root argument is deemed as defeated.

As another example, assume that the system is evaluating whether resource r3 should

be recommended to Peter while he is completing task t1. Figure 5 presents a dialectical

tree illustrating how arguments can be built in favor of such a recommendation. The

root argument of the dialectical tree is recommend(peter, t1, r3). Although there is a

second argument that attacks the root argument, the second argument is in turn defeated

by a third argument, concluding that the recommendation under analysis should be

made.

12

Figure 5: A sample dialectical tree associated with the query

“recommend(peter,t1,r3)”, where the root argument is deemed as undefeated.

1.4 Opinion Mining and Argumentation: Contrasting Opinions

and Viewpoints on the Internet

Opinion mining refers to a number of different techniques (including datamining,

sentiment analysis, etc.) which are used in text analysis for automatically identifying

opinion and emotion. Opinion mining is a very recent research area, and it provides a

powerful resource for educational processes, as it allows students to better understand

concepts and ideas which might be associated with different viewpoints.

Argumentation and opinion mining can be combined into an interesting approach

presented in [16] which results in argument-based opinion mining. In contrast with

other logical approaches to argumentation, an argument A for a conclusion C is

essentially a set of statements that provide reasons to support C. These statements can

correspond to different information items available on the Internet (contents from

reviews, tweets in Twitter, etc.). For the sake of example, we will refer to tweets in

what follows in order to present the associated framework [17]. We will take a sample

topic to illustrate how argument-based opinion mining works. Consider for example

the issue “abortion”. Some tweets on that topic could be as follows:

13

Tweet1= “government should ban #abortion, it means killing babies”

Tweet2 = “#abortion is debatable, not all cases are to be equally considered”

Tweet3=”#abortion is a right every woman has. Defend it”

Tweet4= …

We will refer to the set of topics or issues at hand as the query Q to be associated

with a given argument (e.g. Q = “abortion” or Q = “abortion, Argentina”). In addition

to the notion of query, we will introduce the idea of context or criterion C. This

concept is intended to identify particular properties or features that we would like to

consider associated with the query Q. We will aggregate these two elements when

defining arguments, and hence will write (Q,C). Thus, for example, C1 could be a

criterion that indicates that only tweets posted between timestamp T1 and T2 are to be

selected. Then (Q,C1) will select only those tweets that contain all the terms of query

Q and have been posted in the time period [T1,T2]. Other examples of criteria that can

be naturally applied are, for instance, requiring that those tweets were retweeted more

than n times, requiring that every user that posted tweets T has at least m followers, etc.

Finally, we will also assume a set S of possible sentiments. A possible range for S

could be positive, negative and neutral2. For the sake of example, Tweet1 could be

considered as a negative tweet towards abortion, whereas Tweet3 corresponds to a

positive tweet on that topic. We will generalize the notion of sentiment associated with

a single tweet to the notion of prevailing sentiment in a bunch of tweets (i.e., the

sentiment that prevails, according to some criterion, e.g. percentage). In the same way,

we will assume that sentiments might convey conflicting feelings or emotions (e.g.

anger vs. happiness; boredom vs. excitement, positive vs. negative, etc.). We will

abstract away which is the prevailing sentiment as well as existing conflicts through

mapping functions Sent and Conflict, respectively. Thus, Sent(T) will determine which

is the sentiment value associated with a tweet T (as a singleton). As stated before, we

will extend the intended meaning of Sent to an arbitrary set of tweets T={t1,t2….tk},

where every ti denotes a tweet, so that Sent(T) denotes the prevailing sentiment

associated with T (e.g. most tweets in T are positive, and hence we deem T as

“positive”).

Two sentiments Sent1 and Sent2 in Sent will be “in conflict” whenever Sent1 differs

from Sent2. (e.g. positive will be in conflict with negative; neutral will be in conflict

with negative). According to this, we can say that a set of tweets T1 is in conflict with

a set of tweets T2 whenever Sent(T1) differs from Sent(T2). We further assume that

all possible conflicts are “equally preferred” in the sense that a conflict between positive

2 This approach is used in some commercial platforms for assessing tweets in terms

of a positive, negative or neutral value and the percentage of tweets corresponding to

each value (e.g. sentiment140.com).

14

and negative is as strong as a conflict between positive and neutral; the underlying idea

is to identify the situation that the prevailing sentiments in both sets of tweets are not

the same.

Characterizing an Argument as a Set of Tweets. Arguments in Conflict and

Opinion Trees

For the sake of example, let us assume that we have a set T of 20000 tweets associated

with the query “abortion”, and the context is given by “Argentina” and “years 2018-

2020” (e.g. we consider only tweets originated from Argentinean accounts posted in

the period 2018-2020). Note that in many cases we can easily identify a query because

it was used as a hashtag (e.g. #abortion) within a thread of tweets.

In our approach, an argument A based on opinion mining for a query Q under a

criterion C is a set of tweets associated with (Q,C) with a prevailing sentiment Sent.

Thus, following the previous example, for a query Q = “abortion" and a criterion C

corresponding to “all tweets in the period 2018-2020”, and assuming that the possible

sentiments S= {pos, neg, neutral}, then the argument A for Q under C would be the

subset of all tweets related to “abortion” restricted to the period 2018-2020. Assuming

that e.g. 80% of the tweets have a negative connotation, then the prevailing sentiment

Sent = neg.

We have shown how to express arguments for particular queries under a certain

criterion, associated with a given prevailing sentiment. Such arguments might be

attacked by other arguments, which on their turn might be attacked, too. In

argumentation theory [3], this leads to the notion of dialectical analysis, which can be

associated with a tree-like structure in which arguments, counter-arguments, counter-

counter-arguments, and so on, are taken into account. The central idea underlying the

exploration of possible attacks for a given argument is given by the notion of specificity.

Suppose that an argument supporting the query Q=“abortion" is obtained, with a

prevailing negative sentiment. If the original query Q is extended in some way into a

new query Q’ that is more specific than Q (i.e. Q’ = Q ∪ {w}, for some particular word

w), it could be the case that the argument supporting Q’ would have a different (possibly

conflicting) prevailing sentiment. For example, more specific opinions about abortion

are related to other topics, like for example ethics, social problems or programs,

religious issues, etc. To explore all possible relationships associated with arguments

returned for a specified query Q and criteria C, we can define a high-level algorithm to

construct an opinion tree recursively as follows:3

3 The full-fledged description of the algorithm can be found in [16].

15

Algorithm BuildOpinionTree

Input: query Q, criterion C

Output: Opinion Tree OT(Q) rooted in an argument A for Q under criterion C with

prevailing sentiment Sent

1. We start with an argument A obtained from the original query Q under a criterion C

with a prevailing sentiment S, which will be the root of the tree.

2. Next, we analyze within the tweets in A all relevant words that might be used to

“extend” Q, by adding a new element (w) to the query, obtaining Q’ = Q ∪ {w}.

3. Then, a new argument for Q’ under criterion C with prevailing sentiment S’ is

obtained, which will be associated with a subtree rooted in the original argument A

(i.e., the tree resulting from BuildOpinionTree(Q’,C)).

It is also easy to see that for any query Q, the algorithm BuildOpinionTree finishes in

finite time: given that a tweet may not contain more than 280 characters, the number of

contained descriptors is finite, and therefore the algorithm will eventually stop,

providing an opinion tree as an output.

Figure 6. Schematic overview of argument-based opinion mining. Based on a student

query and a given context, an argument is computed along with possible conflicting

arguments. The whole opinion tree is retrieved as an answer.

16

A Case Study: The Abortion Issue

As a case study to illustrate our approach, we consider the abortion issue based on

information from Twitter in December 2012, when the Michigan legislature was

debating several regulations on abortion practices. Consider the query Q = “abortion",

and a criterion C = {tweets posted less than 48 hours ago}. A root argument is computed

for Q and C, obtaining an associated prevailing sentiment (negative). It should be

remarked that the algorithm for building opinion trees avoids the repetition of any new

descriptor used to extend the query associated with a node. The construction is

performed depth-first, so that new descriptors are gradually introduced using a

technique specifically designed to guide term selection (outside the scope of this paper,

for a detailed description see [16].

Figure 7 illustrates how the construction of an opinion tree for the query Q = “abortion"

looks like. Distinguished symbols (+, -, =) are used to denote positive, negative and

neutral sentiments, respectively. Note that the original query Q has cardinality 1, and

further levels in the opinion tree refer to incrementally augmented queries (e.g.

{“abortion", “michigan"}, or {“abortion", “murder"}). Leaves correspond to arguments

associated with a query Q’ which cannot be further expanded, as the associated number

of tweets is too small for any possible query Q’ U {w}, for some w. Furthermore, we

can identify some subtrees in the Opinion Tree rooted in “abortion” which consist of

nodes having all the same sentiment. In other words, further expanding a query into

more complex queries does not change the prevailing sentiment associated with the root

node. In other cases, expanding some queries results in a sentiment change (e.g. from

“abortion" into {“abortion", “option"} or {“abortion", “wish"}).

Integrating opinion trees into the learning process allows students to analyze public

debate in a more systematic way while at the same time encourages social awareness

and an interest in current affairs. Opinion trees help students synthesize complex

information and analyze a specific topic from different perspectives. This approach

helps improve logical and critical thinking.

17

Figure 7: An Opinion Tree for The Abortion Issue (computed from Twitter, 2012).

Adapted from [18].

1.5 Shared Knowledge Awareness and Argumentation

Shared Knowledge (SK) concerns the common knowledge constructed by a

student group when carrying out a collaborative learning activity in a CSCL

environment.4 In this setting, Shared Knowledge Awareness (SKA) has been defined

as the consciousness on the SK that this student group has when performing a specific

collaborative task in a restricted moment of time [19,20]. Indeed, the construction of

SK is strongly related to the acquisition of an appropriate level of SKA, as being aware

of any knowledge (in particular SK) implies learning something about it.

Students’ acquisition of SKA in CSCL scenarios is not a simple task, and a number

of questions that should be considered to reach it have been proposed [19]. However,

it is difficult to ascertain how to provide mechanisms to model the construction of SKA

in a real CSCL system. Indeed, this problem is related to different features, in particular

4 CSCL stands for “Computer Supported Collaborative Learning”.

18

with characterizing the students’ dialectical reasoning underlying negotiation processes

when looking for an agreement or consensus about a given claim.

In this section, we will illustrate how computational argumentation can contribute

when modeling educational processes where different knowledge sources (associated

with capabilities or domain knowledge corresponding to different students) can be

integrated following an argumentative approach. We will consider DeLP as the

underlying programming language to provide a support tool for dialectical discussions

in a CSCL framework. Indeed, our framework will allow modeling the dialectical

analysis carried out by participants in CSCL scenarios, helping them to identify the

emerging SK and the explicit specification of its associated SKA. As a starting point,

we will consider the individual knowledge constructed by different students when

performing a collaborative task (probably expressed in natural language and stored in

a generic CSCL platform).

We depart from the assumption that the knowledge required for solving the

collaborative task is complex, so that students should be able to integrate different

perspectives and conflicting opinions about the task to be solved. Our goal is that

participating students can make use of the reasoning and visualization capabilities

provided by the argumentation system in order to support part of their SK construction

as well as making explicit its associated SKA. Figure 8 illustrates the process of

acquiring shared knowledge awareness through argumentation. As a result of this

process, students will be able to identify what we will call Argument-Based Shared

Knowledge (ArgSK): students are aware of how different conflicting pieces of

knowledge are related to each other, why some of such pieces should be deemed as

warranted (and some others should not), and how their own individual knowledge may

be in conflict with other participants’ knowledge.

Figure 7. Schematic overview of argument-based shared knowledge awareness. Based

on knowledge from individual students an intelligent agent builds shared knowledge,

which is combined with a dialectic process to acquire shared knowledge awareness.

19

A Case Study: Solving a Printer Configuration Problem Collaboratively5

Consider the following case study: Computer Science students from three different

universities U1, U2 and U3 (located in different cities) have to solve an activity

collaboratively in a CSCL scenario. The activity is structured using the JIGSAW

technique [21] and includes the task T of detecting good and bad features in different

configurations of a personal computer model called “pcu” (acronym for “PC for

universities''), which is the computer model available in the computer labs of the three

universities (e.g. the three labs have pcus with the same configuration, devices, etc.).

The students are divided into small groups of three people, each of them belonging to

a different university. Following the JIGSAW technique, each member of the group

will be responsible for analyzing a different piece of knowledge when constructing

his/her individual knowledge. Let us focus on one jigsaw group G formed by three

students, namely S1, S2 and S3. As stated before, we will assume that S1, S2 and S3 are

using a particular CSCL system to solve T, as they are located in different cities. For

the sake of example, the students must learn about different topics related to pcus as

follows: 1) S1 is assigned the topic “input/output devices''; 2) S2 is assigned the topic

“memory devices”; and 3) S3 is assigned the topic “processors”.

Let us assume that students have already constructed their individual knowledge

and they are coming back to the group G to solve T. At this moment, S1, S2 and S3 have

to present a well-organized report to other members of G about the topic each of them

has studied. The immediate goal is to construct SK and SKA in order to solve T. As a

part of their SK and SKA, students are offered to re-cast their knowledge using an

argumentative formalism (such as DeLP), where arguments and their acceptance

statuses can be computed automatically.

Following our proposal, an automated argumentation platform is integrated with

the CSCL scenario. It includes a knowledge base K (empty at the beginning), an

inference engine for computing arguments and a suitable front-end for posing queries

and visualizing results. First, each student Si exchanges (separately) messages with an

intelligent agent about what he/she knows, and the intelligent agent writes down this

in terms of rules and facts. Following our example, suppose that student S1 has acquired

knowledge about printers (as they are I/O devices). He/she has learned the following:

hp1020 and hp1018 are models of laser printers. Laser printers work ok if the computer

has a good RAM memory. Inkjet printers usually work ok with any kind of computer.

Besides, S1 has checked the computer model “pcu” (the object of study) and has seen

that there was a printer connected, namely the hp1020. In the same way, S2 has studied

memory devices. He/she has learned that a RAM memory of 256 Mb or more is usually

good enough for a computer, unless you want to use it with a laser printer, since in

such a case a RAM of 256 KB has slow access, which is usually not a good feature. In

addition, S2 has checked the computer model “pcu” and has seen that the computer had

256Mb of RAM memory (note that S2 does not know anything about processors or

printers, he just knows that they appeared as related concepts when learning about

memory devices). Concerning S3, he/she has individual knowledge about processors.

5 This example was originally presented in [20].

20

He/she has learned that if a computer has a processor double-core, then the processor

is usually fast. Pentium processors result in slow access time for RAM memory. An

exception are Pentiums with the special swap technology, which do not have this

problem. He/she has checked the computer model “pcu” and has seen that it has a

Pentium processor with “swap technology”.6

At the end of all the dialogues between S1, S2 and S3 with the intelligent agent, the

knowledge base K stores the sum of the three students’ individual knowledge, which

could have been written down by the intelligent agent as follows:

Facts about the computer in the lab

printer(pcu, hp1020) % fact from student S1

has_ram (pcu,256) % fact from student S2

processor (pcu,pentium) % fact from student S3

Defeasible rules (Commonsense knowledge) - C stands for an arbitrary computer

Knowledge about printers coming from S1

printer(C, laser) ⤙ printer(C, hp1020)

printer(C, laser) ⤙ printer(C, hp1018)

printer_ok(C)⤙ ram_memory(C,good), printer(C, laser)

printer_ok(C)⤙ printer(C, inkjet)

Knowledge about RAM memories coming from S2

ram_memory (C, good)⤙ has_ram (C,X), X>=256

ram_slow_access(C) ⤙ has_ram (C,X), X=256, printer(X,laser)

~ram_memory (C,good) ⤙ ram_slow_access (C)

Knowledge about processors coming from S3

processor(C, fast) ⤙ processor(C,double_core)

ram_slow_access (C)⤙ processor(C,pentium)

~ram_slow_access (C) ⤙ processor(C,pentium), has_processor(pentium,swap_tech)

Now, consider that as part of task T to solve (detecting good and bad features in

different configurations of a “pcu”), S1, S2 and S3 are discussing about the piece of

knowledge “printer_ok(pc)”, which stands for the claim “is it ok to have a printer

connected to the computer pcu?”. By analyzing the individual knowledge provided by

each Si separately, the members of G cannot infer anything (except from the facts

6 Names and values used here are fictitious. They are just considered for the sake of

the example and not necessarily according to a real-world situation.

21

provided). However, if they jointly consider all the information stored in K (which

accounts for part of their SK) they can rely on DeLP to automatically compute a

dialectical tree rooted in the above claim, which will include all possible combinations

of arguments and defeaters related to the claim. This way, they can guarantee that those

pieces of knowledge subject to dialectical discussions will be part of the SK only if

they are warranted on the basis of the joint knowledge of the group, thus avoiding a

dialectical discussion based on incomplete and biased perceptions of reality. Hence, if

the claim results to be supported by a warranted argument, then the above piece of

knowledge can be part of the argument-based shared knowledge (ArgSK) for the group

on the basis of rational and justified information.

In this particular example, S1, S2 and S3 will obtain a warranted argument supporting

the claim “printer_ok(pcu)” (as the warranted argument Arg1 supports it), and they will

add the claim to their ArgSK. Note that the claim is deemed as warranted by the

underlying argumentation system, based on the dialectical tree shown in Figure 3.

Besides, S1, S2 and S3 will visualize the dialectical tree shown in Figure 3 (left), which

explicitates a rational justification of the obtained results. Indeed, it can be seen that

there exists an argument Arg1 supporting “printer_ok(pcu)”, which can be obtained by

combining knowledge from S1 and S2. The argument is based on knowing that “pcu”

has enough RAM memory to support hp1020, the laser printer connected to it.

However, Arg1 is defeated by Arg2, which supports the claim “~ram_memory (pcu,

good)” (the student who studied memory devices provided a defeasible rule which

states that 256 Mb usually do not suffice for a laser printer to run ok). But this argument

Arg2 is on its turn defeated by Arg3 standing for “~ram_slow_access(pcu)” (the student

who studied processors provided a defeasible rule which states that computers with

Pentium processors with swap technology, as it is the case here, do not have problems

with RAM of 256 Mb). This way, the visualization of the tree will be linked to the

ArgSKA associated with the claim under consideration, helping S1, S2 and S3 to be

aware of their own SK. Later on, S1, S2 and S3 will be able to use the piece of warranted

knowledge (the fact that the printer connected will work ok) when going further on the

resolution of T.

22

Figure 8: Outline of the dialectical analysis obtained for the claim “is it ok to have a

printer connected to the computer pcu?”. Left: Arg1 is warranted and ultimately

prevails, as it is defeated by Arg2, which is on its turn defeated by Arg3. Right: the

argument contents provided by the argumentation engine in DeLP.

1.6 Conclusions and Related Work

In this chapter we have analyzed the role of computational argumentation as a metaphor

for handling incomplete and potentially contradictory information. The task of

contrasting alternative arguments and determining which ones are to be ultimately

accepted is core to many educational processes in which critical thinking is involved.

Even though argumentation has been central to education for many centuries in

Western civilization, it has not been until recently that more evolved computational

models for argumentation have been developed. We contend that these models can

provide effective alternatives for new conceptualizations that improve and empower

analytical thinking for both students and teachers.

In the last years, argumentation has had considerable growth and consolidation,

establishing itself as a discipline in its own right within the research community in

Artificial Intelligence. Argument-based recommender systems (one of the applications

discussed in this chapter) have received particular attention when context-based

information is taken into account [22,23,24]. Another important aspect that needs to be

considered in the learning environment is the notion of trust. Students or instructors

may trust certain learning resources because other users trusted by them recommend

those resources, or simply because they trust the resources’ sources. Trust is subjective,

not always symmetric or transitive, context dependent, dynamic, and defeasible. Hence,

as discussed in [25], trust can be naturally modeled using an argumentative framework,

playing a useful role at the moment of integrating the notion of trust to support any

learning process.

23

Recent research [26,27] has been focused on integrating persuasion and computational

argumentation in a unified system, leading towards a so-called Automated Persuasion

System (APS). Persuasion is an activity that involves one party trying to induce another

party to believe something or to do something. It is an important and multifaceted

human facility. As the authors point out, persuasion is present in many human activities

(such as a doctor persuading a patient to drink less alcohol, a road safety expert

persuading drivers to not text while driving, or an online safety expert persuading users

of social media sites to not reveal too much personal information online). An automated

persuasion system (APS) is a system that can engage in a dialogue with a user (the

persuadee) in order to persuade the persuadee to do (or not do) some action or to believe

(or not believe) something. To do this, an APS aims to use convincing arguments in

order to persuade the persuadee. Computational persuasion is the study of formal

models of dialogues involving arguments and counterarguments, user models, and

strategies, for APSs. The authors claim that a promising application area for

computational persuasion is in behavior change (particularly in the context of

healthcare organizations, where there is much interest in changing behavior of

particular groups of people away from actions that are harmful to themselves and/or to

others around them). In our opinion, education is also an area where APS could play

an important role (as students need typically to be persuaded of carrying out different

goals as part of educational processes ―e.g., carrying out some particular kind of

exercise, mastering some skill, etc.).

Along this chapter, we have carried out an analysis of the impact and possibilities of

computational argumentation from different perspectives, based on some common

elements of argumentation provided in Section 1.2 (including a brief account of

Defeasible Logic Programming). In Section 1.3 we showed how argumentation and

traditional recommender systems can be unified into argument-based recommender

systems, in which recommendations associated with the outcome of a particular query

on a certain domain can be backed up by arguments that have emerged as ultimately

accepted after performing a dialectical analysis. Then, in Section 1.4 we moved into

mining opinions from user content knowledge (particularly information in Twitter). We

showed that argumentation can provide the backbone for an enhanced model in which

arguments are given by sets of information units (e.g. tweets) that have a prevailing

sentiment. Such arguments could also be contrasted using a dialectical analysis,

identifying so-called “opinion trees” (an alternative form for representing dialectical

analysis). Finally, in Section 1.5 we analyzed the concept of shared knowledge

awareness in a group of students. We showed that for solving a particular problem (e.g.

making a printer work), students might need to combine pieces of information from

their own knowledge, and that potential conflicts and inconsistencies might arise. Once

again, argumentation comes out as a solution for such situations, allowing students to

be aware of their “shared knowledge” that contributes to finding a solution for a given

problem.

In summary, we have shown that computational argumentation can indeed provide a

powerful model for recasting and enhancing traditional educational processes

(particularly those in which incomplete and potentially inconsistent information is at

24

hand, and different, alternative viewpoints have to be assessed and contrasted). We

think that the three alternatives explored in this chapter (argument-based

recommendation, argument-based opinion mining and argument-based shared

knowledge awareness) illustrate the power of argumentation as a backbone for

developing new, different intelligent techniques and approaches for educational

purposes. Even though many advances have been achieved, the most promising results

in this direction seem still to be seen in the future.

Acknowledgements. This research was supported by Projects PICT 2014-0624 and

PGI 24/N051(Universidad Nacional del Sur and ANPCyT, Argentina).

References

1. García, Alejandro J., and Guillermo R. Simari. (2004) "Defeasible logic programming: An

argumentative approach." Theory and practice of logic programming 4.1+ 2: 95-138.

2. Besnard, P., & Hunter, A. (2008). The elements of argumentation. The MIT Press.

3. Rahwan, I., & Simari, G. (Eds.). (2009). Argumentation in Artificial Intelligence. Springer.

4. Modgil, S., Toni, F., Bex, F., Bratko, I., Chesñevar, C., Dvorak, W., Falappa, M., Fan, X.,

Gaggl, S., Garcıa, A., González, M., Gordon, T., Leite, J., Mozina, M., Reed, C., Simari,

G., Szeider, S., Torroni, P., Woltran, S.). The Added Value of Argumentation” (2012). In,

vol. Nro 8, 357—404, In Sascha Ossowsky (Ed) The Law, Governance and Technology

Series (LGTS), “Agreement Technology Handbook" v.8, 357-404.

5. Maudet, Nicolas, Simon Parsons, and Iyad Rahwan. "Argumentation in multi-agent systems:

Context and recent developments." International Workshop on Argumentation in Multi-

Agent Systems. Springer, Berlin, Heidelberg, 2006.

6. Chesñevar, C.; Maguitman, A.; Simari, G. (2006). Argument-based critics and

recommenders: A qualitative perspective on user support systems. Data Knowl. Eng. 59(2):

293-319.

7. Chesñevar, C., Maguitman, A, & Simari, G. (2007). Recommender Systems based on

Argumentation, in "Emerging Artificial Intelligence Applications in Computer

Engineering". Maglogiannis et al (eds). Frontiers in Artificial Intelligence and

Applications, IOS Press, v.160, 53-70.

8. Briguez, C.; Budán, M.; Deagustini, C.;, Maguitman, A.; Capobianco, M.; Simari, G.

(2012). Towards an Argument-based Music Recommender System. COMMA 2012: 83-90.

9. Briguez, Cristian E., et al. "Argument-based mixed recommenders and their application to

movie suggestion." Expert Systems with Applications 41.14 (2014): 6467-6482.

10. Tselios, N. K., Avouris, N. M., & Kordaki, M. (2002). Student task modeling in design and

evaluation of open problem-solving environments. Education and Information

Technologies, 7(1), 17-40.

11. Rodríguez, P., Heras, S., Palanca, J., Poveda, J. M., Duque, N., & Julián, V. (2017). An

educational recommender system based on argumentation theory. AI Communications,

30(1), 19-36.

12. Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems. In The

adaptive web (pp. 325-341). Springer, Berlin, Heidelberg.

http://mitpress.mit.edu/authors/philippe-besnard
http://mitpress.mit.edu/authors/anthony-hunter
https://dblp.org/pid/c/CarlosIvanChesnevar.html
https://dblp.org/pid/s/GuillermoRicardoSimari.html
https://dblp.org/db/journals/dke/dke59.html#ChesnevarMS06
https://dblp.org/pid/118/2713.html
https://dblp.org/pid/116/9311.html
https://dblp.org/pid/117/7529.html
https://dblp.org/pid/61/5930.html
https://dblp.org/pid/s/GuillermoRicardoSimari.html
https://dblp.org/db/conf/comma/comma2012.html#BriguezBDMCS12

25

13. Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering

recommender systems. In The adaptive web (pp. 291-324). Springer, Berlin, Heidelberg.

14. Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the 22nd

annual international ACM SIGIR conference on Research and development in information

retrieval (pp. 50-57).

15. Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for

recommender systems. Computer, 42(8), 30-37.

16. Grosse, K., González, M. P., Chesñevar, C., & Maguitman, Ana (2015). Integrating

argumentation and sentiment analysis for mining opinions from Twitter. AI

Communications, 28(3):387-401.

17. Chesñevar, C., Maguitman, A., Estévez, E., & Brena, R. (2012). Integrating Argumentation

Technologies and Context-Based Search for Intelligent Processing of Citizens' Opinion in

Social Media. In Proceedings of 6th International Conference on Theory and Practice of

Electronic Governance, ICEGOV '12, (pp. 171-174). ACM Press.

18. Chesñevar, Carlos Iván, Ana Gabriela Maguitman, and María Paula González. Empowering

citizens through opinion mining from twitter-based arguments."Proceedings of the 8th

International Conference on Theory and Practice of Electronic Governance. 2014.

19. Collazos, C., Guerrero, L., Pino, J., and Ochoa, S. (2002). Introducing Knowledge-Shared

Awareness. Procs. of IASTED’02, USA, pp.13-18.

20. González, M.; Chesñevar, C.; Collazos, C.; Simari, G. (2007). Modelling Shared Knowledge

and Shared Knowledge Awareness in CSCL Scenarios Through Automated Argumentation

Systems. CRIWG 2007: 207-222

21. Aronson, E., Blaney, N., Stephin, C., Sikes, J., & Snapp, M. (1978). The Jigsaw Classroom.

Beverly Hills, CA: Sage Publishing Company.

22. Teze, J.; Gottifredi, S.; García, A.; Simari, G (2020). An approach to generalizing the

handling of preferences in argumentation-based decision-making systems. Knowl. Based

Syst. 189 (in press).

23. Teze, J.; Godo, L.; Simari, G. (2018). An Argumentative Recommendation Approach Based

on Contextual Aspects. SUM 2018: 405-412

24. Leiva, M.; Budán, M.; Simari, G. (2020). Guidelines for the Analysis and Design of

Argumentation-Based Recommendation Systems. IEEE Intell. Syst. 35(5): 28-37.

25. Briguez, C. E., Capobianco, M., & Maguitman, A. G. (2013). A theoretical framework for

trust-based news recommender systems and its implementation using defeasible

argumentation. International Journal on Artificial Intelligence Tools, 22(04), 1350021.

26. Hunter, A. (2018). Towards a framework for computational persuasion with applications in

behaviour change. Argument Comput. 9(1): 15-40.

27. Chalaguine, L.; Hunter, A. (2020). A Persuasive Chatbot Using a Crowd-Sourced Argument

Graph and Concerns. COMMA 2020: 9-20.

http://content.iospress.com/search?q=author%3A%28%22Grosse%2C+Kathrin%22%29
http://content.iospress.com/search?q=author%3A%28%22Gonz%C3%A1lez%2C+Mar%C3%ADa+P.%22%29
http://content.iospress.com/search?q=author%3A%28%22Ches%C3%B1evar%2C+Carlos+I.%22%29
http://content.iospress.com/search?q=author%3A%28%22Maguitman%2C+Ana+G.%22%29
https://dblp.org/pid/41/5074.html
https://dblp.org/pid/62/1527.html
https://dblp.org/pid/s/GuillermoRicardoSimari.html
https://dblp.org/db/conf/criwg/criwg2007.html#GonzalezCCS07
https://dblp.org/pid/90/8671.html
https://dblp.org/pid/92/3485.html
https://dblp.org/pid/s/GuillermoRicardoSimari.html
https://dblp.org/db/journals/kbs/kbs189.html#TezeGGS20
https://dblp.org/db/journals/kbs/kbs189.html#TezeGGS20
https://dblp.org/pid/144/8779.html
https://dblp.org/pid/15/801.html
https://dblp.org/pid/s/GuillermoRicardoSimari.html
https://dblp.org/db/conf/sum/sum2018.html#TezeGS18
https://dblp.org/pid/248/6648.html
https://dblp.org/pid/116/9311.html
https://dblp.org/pid/30/2915.html
https://dblp.org/db/journals/expert/expert35.html#LeivaBS20
https://dblp.org/db/journals/argcom/argcom9.html#Hunter18
https://dblp.org/pid/204/1250.html
https://dblp.org/db/conf/comma/comma2020.html#ChalaguineH20

