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Abstract. 

This book chapter analyzes different applications and challenges of computational argumentation 

for modeling different aspects of learning processes. Some of the topics included are argument-

based recommender systems for educational purposes; argument-based shared knowledge for 

computer-supported collaborative learning (CSCL) and argument-based opinion mining for 

eliciting students’ knowledge based on information items corresponding to different topics of 

study. We also identify and discuss salient challenges associated with argumentation in the 

current state of the art. The chapter is organized to be self-contained, including an overview of 

the key elements in computational argumentation. Our contribution is intended to provide a 

reference point for researchers working on intelligent techniques for educational processes who 

are interested in incorporating argumentation as a metaphor for modeling intelligent decision 

making in Intelligent Tutoring Systems (ITS), Computer-Supported Collaborative Learning 

(CSCL) systems, and other related areas. 
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1.1 Introduction 

Computational argumentation is a discipline that has been gaining increasing 

importance and wider audiences over the last decades, mainly as a vehicle for 
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facilitating rationally justifiable decision making when handling incomplete and 

potentially inconsistent information. Argumentation provides a sound model for 

dialectical reasoning, which underlies discussions or opinion confrontation in social 

networks. In Collaborative systems, argumentation is an important aspect to help 

problem-solving situations, considering the cognitive processes of critical information 

checking, argument elaboration and the taking of multiple perspectives. Argumentation 

systems are increasingly being considered for applications in developing software 

engineering tools, constituting an important component of multi-agent systems for 

negotiation, problem solving, shared understanding, and the fusion of data and 

knowledge. Such systems implement a dialectical reasoning process by determining 

whether a proposition follows from certain assumptions, analyzing whether some of 

those assumptions can be disproved by other assumptions in our premises. In this way, 

an argumentation system provides valuable help to analyze which assumptions from 

our knowledge base are giving rise to inconsistency and which assumptions are 

harmless. 

 

This chapter is structured as follows. In Section 1.2 we summarize the main elements 

which characterize computational models of argument (such as argument, 

counterargument, defeat, and the notion of warranted conclusion). We will introduce 

the basics of Defeasible Logic Programming [1], which will be used for subsequent 

examples. Then, in Section 1.3 we focus on argument-based recommender systems, a 

sub-area that has received particular attention in the last years. We discuss potential 

applications of these recommenders for educational purposes. Section 1.4 discusses an 

alternative approach to argumentation based on opinion mining. We show that this 

particular view of argumentation processes can help enhance learning processes by 

identifying reasons pro and con in a very intuitive way. Section 1.5. considers the notion 

of shared knowledge awareness in the context of argumentation. We show how multiple 

knowledge bases (associated with different students) can be suitably integrated for 

collaborative problem solving. Finally, Section 1.6 presents the conclusions and 

discusses some avenues for future research. 

1.2 Argumentation in a nutshell 

Argumentation is an important aspect of human decision making. In many situations of 

everyday life, when faced with new information, people need to ponder its 

consequences, in particular when attempting to understand problems and come to a 

decision. Argumentation systems [1,2,3,4] are increasingly being considered for 

applications in developing software engineering tools, constituting an important 

component of multi-agent systems for negotiation, problem solving, and the fusion of 

data and knowledge. Such systems implement a dialectical reasoning process by 

determining whether a proposition follows from certain assumptions, analyzing 

whether some of those assumptions can be disproved by other assumptions in our 

premises. In this way, an argumentation system provides valuable help to analyze which 

assumptions from our knowledge base give rise to inconsistencies and which 

assumptions are harmless. 
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In defeasible argumentation, an argument is a tentative (defeasible) proof for reaching 

a conclusion. Arguments may compete, rebutting each other, so a process of 

argumentation is a natural result of the search for arguments. Adjudication of 

competing arguments must be performed, comparing arguments in order to determine 

what beliefs are ultimately accepted as warranted or justified. Preference among 

conflicting arguments is defined in terms of a preference criterion which establishes a 

partial order “≼ " among possible arguments; thus, for two arguments A and B in 

conflict, it may be the case that A is strictly preferred over B (A ≻ B), that A and B are 

equally preferred (A ≽ B and A ≼ B) or that A and B are not comparable with each 

other. For the sake of example, let us analyze the following example about real-world 

knowledge on spiders. Consider the following sentences:  

 

(1) If something looks dead, it is usually dead;  

(2) If something moves when touched, it is usually not dead;  

(3) If a spider is dead, it is usually not dangerous.  

(4) If something is a spider, it is usually dangerous. 

(5) Black widow is a spider.  

(6) Black widow moves when touched. 

(7) Black widow looks dead. 

 

Sentences in italics correspond to defeasible rules (rules which are subject to possible 

exceptions). Statements (5), (6), and (7) correspond to facts (strict information).  Note 

that different arguments can be constructed: 

  

1. Argument A (based on rules 4 & fact 5): Black widow is a spider. Spiders are usually 

dangerous. Therefore, black widow is dangerous. 

 

2. Argument B (based on rule 1,3 and facts 5,7): Black widow is a spider. Black widow 

looks dead. If something looks dead, it is usually dead. If a spider is dead, it is usually 

not dangerous. Therefore, Black widow is not dangerous. 

 

3. Argument C (based on rule 2, fact 6). Black widow moves when touched. If 

something moves when touched, it is usually not dead. Therefore Black widow is not 

dead. 

  

In this particular situation, different arguments arise that cannot be accepted 

simultaneously (as they reach contradictory conclusions). Note that argument B seems 

rationally preferable over argument A, as it is based on more specific information. As 

a matter of fact, specificity is commonly adopted as a syntax-based criterion among 

conflicting arguments, preferring those arguments which are more informed or more 

direct [1]. In this particular case, if we adopt specificity as a preference criterion, 

argument B is justified, whereas A is not (as it is defeated by B). The above situation 

can easily become much more complex, as an argument may be defeated by a second 

argument (a defeater), which in turn can be defeated by a third argument, reinstating 

the first one. As a given argument might have many defeaters, the above situation 
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results in a tree-like structure, rooted in the first argument at issue, where every 

argument in a branch (except the root) defeats its parent (see Figure 1(c)). 

 

Defeasible Logic Programming:  implementing argumentation as a programming 

language 

 

Defeasible Logic Programming (DeLP) [1] is a logic-based programming language for 

modeling incomplete knowledge and providing argument-based inference.1 It has been 

applied in different contexts, such as multi-agent reasoning [5], recommender systems 

[6,7,8,9], among others. As most computational argumentation systems, DeLP relies 

on two kinds of knowledge:  strict and defeasible knowledge. Strict knowledge 

corresponds to the knowledge that is certain, such as facts about the world or 

mathematical truths (e.g. “all men are mortal”). The strict knowledge is consistent, i.e. 

no contradictory conclusions can be derived from it. On the other hand, defeasible 

knowledge corresponds to that knowledge which is tentative, modeled through “rules 

with exceptions” (defeasible rules) of the form “if P then usually Q” (e.g., “if 

something is a bird, it usually flies”). Such rules model our incomplete knowledge 

about the world, as they can have exceptions (e.g., a penguin, a dead bird, etc.). 

Syntactically, a special symbol (⤙ ) is used to distinguish “defeasible” rules from 

logical implications ( ←). 

Argumentation systems like DeLP allow the user to define a knowledge base involving 

strict and defeasible knowledge. An argument A for a claim c is basically some 

“tentative proof” (a derivation using a non-empty set of defeasible information) for 

concluding c from the knowledge base (DeLP program). Arguments must additionally 

satisfy the requirement of consistency (an argument cannot include contradictory 

propositions) and minimality (by not including repeated or unnecessary information). 

Conflicting arguments may emerge in DeLP: an argument A attacks another argument 

B whenever both of them cannot be accepted at the same time, as that would lead to 

contradictory conclusions.  Arguments are on their turn compared with each other using 

a modular criterion (typically specificity), so that it can be established when an 

argument defeats another.  

Note that the notion of defeat among arguments may lead to complex “cascade” 

situations: an argument A may be defeated by an argument B, which in turn may be 

defeated by an argument C, and so on. Besides, every argument involved may have on 

its turn more than one defeater. Argumentation systems allow us to determine when a 

given argument is considered as ultimately acceptable with respect to the knowledge 

we have available by means of a dialectical analysis, which takes the form of a tree-

like structure called dialectical tree. The root of the tree is a given argument A 

supporting some claim, and children nodes for the root are those defeaters B1, B2, ... Bk 

for A. The process is repeated recursively on every defeater Bi, until all possible 

arguments have been considered. Leaves are arguments without defeaters. Some 

                                                           
1 For an in-depth treatment of DeLP and its features the reader is referred to [1]. 
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additional restrictions apply (e.g. the same argument cannot be used twice in a path, as 

that would be fallacious and would lead to infinite paths).   

Figure 1(a)  illustrates how a DeLP program for the spider example can be formulated.  

Note that the symbol “ ~ “ stands for strict negation (thus, ~dead(X) means “X is not 

dead”). In this sample DeLP code “bw” stands for “black widow”. The DeLP 

programming language allows to make queries such as “dangerous(bw)”  (standing for 

“is black widow dangerous?”), which prompts the computation of an argument 

supporting the query. The argument A is found  (since bw is a spider, it should be 

considered dangerous by default).  Additionally, a defeater argument B is found which 

attacks A  (black widow is not dangerous as it looks dead), which is on its turn defeated 

by a third argument C  (black window moves when touched, and therefore it is not 

dead!). All this dialectical process is carried out automatically by the DeLP inference 

engine (associated arguments can also be displayed using a GUI interface). The 

associated dialectical analysis is shown in Figure 1(b). Arguments with no successful 

attacks are deemed as ultimately accepted (e.g. argument C). An inner argument is 

deemed as ultimately accepted if all  its attackers are not accepted; otherwise, the inner 

argument is defeated. Complex situations might arise (e.g. Figure 1(c)), which are 

solved by the DeLP inference engine.  

 

Figure 1.   (a) DeLP program for the spider example. (b) The original argument is 

deemed as “accepted”. (c) The dialectical analysis might be complex, resulting in a 

dialectical tree with several nodes representing arguments and attack relationships 

among them. 
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1.3 Argument-based Recommendation in Learning Environments 

The Internet is one of the main sources of information and resources for students to 

explore or learn practically any topic. However, identifying the most useful information 

or resources can be a difficult task for a student. One of the main difficulties is that 

there is an overwhelming amount of potentially useful material for learning nearly any 

topic. Another difficulty lies in the fact that students might not be able to pose 

appropriate queries to search for relevant content as they may not be entirely familiar 

with the topic being or to be learned. 

 

Recommender systems can alleviate these problems by providing meaningful 

recommendations to students. Recommendation in learning environments can be 

exploited from different perspectives. One approach consists in identifying and 

suggesting learning objects (e.g., documents, videos, instructional games, etc.)  for a 

specific learning objective.  Learning objects are characterized by metadata such as 

educational resource type, interactivity type and level, content, description, language, 

and format.   When confronted with a problem requiring procedural knowledge (i.e. a 

sequence of steps to be carried out to solve a task), recommender systems can play a 

useful role by providing suggestions and hints (e.g. by pointing out possible alternatives 

or by issuing a warning when a wrong decision has been made). Also, recommenders 

can be useful during the knowledge acquisition process itself, by engaging learners in 

specific activities that promote declarative knowledge construction through the 

exploration of both domain-specific and domain-general knowledge. 

 

A recommender system can adopt a task modeling approach, a user modeling approach, 

or a combination of both.  A task is a piece of work required to achieve an objective. 

Tasks are usually associated with the need to access information to solve problems, 

evaluate content, construct meaning, create knowledge and make decisions. A task-

based recommender system that supports a student learning process typically monitors 

the student’s work, analyzes its content, seeks for similar content or other students that 

completed similar tasks, generates recommendations, and incrementally refines the 

recommendations based on the student’s progress on the task at hand and the student’s 

reaction to the suggested resources. Task representations need to be continuously 

updated as students change their focus during learning activities. This can be captured 

by analyzing a variety of contextual interaction patterns resulting from clicks, dwell 

time, cursor movement, scrolling, etc. A learning resource that proved to be useful for 

a learning task is likely to be useful for a similar task. Hence being able to model tasks 

and determine when two tasks are similar is key to develop a task-based recommender.  

A learning task can be modeled by the student’s log activity, documents being read or 

edited, web pages being visited, milestone tasks being accomplished, among other 

items [10]. Task representations can be stored in a repository and associated with 

different kinds of resources (learning objects, procedural knowledge, and domain 

knowledge) that proved to be useful during those particular tasks. 

 

Different from task models, which are changeable, user models are more persistent. 

Students can be modeled by their declared interest, their long-term browsing history, 
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capabilities, social network communities, and social media interactions, among other 

features. In [11] various aspects are considered to model the student profile, such as 

learning style, educational level, preferred language, preferred topic, and preferred 

format. By modeling students, it is possible to compute similarity scores among 

students, and hence to recommend items to a target student based on how useful those 

items proved to be in the past to students with a similar profile.  

 

The most common variants of recommender systems are content-based [12] and 

collaborative filtering [13].  Content-based recommender systems rely on a 

representation of a user or an item to find items that match with the user’s 

recommendation needs.  For instance, a content-based recommendation for a student 

currently learning a specific topic in biology requires representing the specific topic or 

the knowledge the student currently has or seeks to have about the topic to identify 

material similar to these representations. On the other hand, collaborative filtering 

algorithms rely on past user’s behavior to find other users with similar behavior. The 

basic idea of a collaborative filtering approach is to provide item recommendations 

based on those items that were useful to or were liked by similar users. For instance, by 

modeling a student’s skill, it may be possible to identify other students with similar 

skills to recommend material that proved to be useful to those similar students in the 

past.    

   

Most existing recommenders are based on machine learning and information retrieval 

algorithms. As indicated in the literature [6,7], these approaches are unable to 

effectively provide informed explanations of the reasons behind a given 

recommendation. Also, these approaches do not naturally support the kind of analysis 

of actions and interactions that are crucial in any learning process. 

 

Incorporating Argumentation to Recommend Learning Resources   
 

Argument-based recommenders can be applied to overcome some of the limitations of 

traditional recommendation systems in learning environments. Content- and 

collaborative-based recommender systems that use task-modeling or user-modeling 

approaches can be enhanced by incorporating argumentation technologies, to provide 

reasoned recommendations and facilitate the exploration of relevant learning resources 

through a dialectic process.  Since the students will receive both a recommendation and 

a reason supporting it, they will have more confidence in the presented results and they 

can give the system explicit feedback that can help guide the recommendation process.  

 

The widespread availability of learning resources repositories, coming from different 

sources and accessed by students with mixed backgrounds, perspectives, and learning 

abilities offers new opportunities to create argument-based recommendation services. 

These services can take advantage of the diverse community of students accessing the 

stored learning resources to implement collaborative-based recommenders. Developing 

an algorithm for recommending learning resources is challenging because it requires 

combining many, sometimes conflicting aspects. For instance, a resource may be useful 

for learning a physics topic for a student with a good mathematics background but it 

may not be useful for someone who has not developed a good background in 
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mathematics yet.  In light of the defeasible nature of students’ information needs in 

learning environments, argumentation is an attractive technology to explore and revise 

potential recommendations, by generating suggestions of learning resources based on 

items that proved to be useful in the past during similar tasks and adapting them to the 

target student.  

During procedural knowledge acquisition, students typically create and test solutions 

in shared learning environments and discuss their potential solutions with teachers and 

other students while carrying out learning tasks. The creation and discussion could be 

naturally integrated with a collective dialectic process that provides a context to let 

learners actively explore different ideas and positions.  An argument-based 

recommender that guides this process will foster the generation of ideas and debate. 

Another natural way in which argumentation can help enhance the recommendation of 

general and domain-specific knowledge is by involving the student in an argumentation 

process, either with the recommendation system or with other students. During 

declarative knowledge acquisition, an argument-based recommender will advise the 

student on which areas to cover, to increase the effectiveness of the learning process. It 

can also guide students in the process of engaging in specific discourse activities, to 

express their viewpoints and also to react to other students’ perspectives. 

Figure 2:  Argument-based recommender systems in the context of educational 

processes from a high-level perspective 

Figure 2 provides a general picture of how argumentation can be integrated into the 

recommendation process in a learning environment. Based on a student’s current task, 

similar stored past tasks can be retrieved. As discussed above, stored past tasks will 

typically be associated with a variety of learning resources, which may include learning 

objects of different types (e.g., manuals, videos, instructional games, etc.), as well as 



9 

with procedural and declarative knowledge that proved to be useful for the associated 

tasks in the past. Also, based on the student profile it is possible to retrieve the profiles 

of other similar students and those learning resources that proved to be useful to those 

students in the past. Finally, an argument-based approach can be taken to revise, adapt 

and integrate information coming from similar students and tasks, resulting in 

recommendations of potentially useful learning resources.   We present next a case 

study illustrating how an argument-based recommendation approach based on 

Defeasible Logic Programming can be applied in a learning scenario. 

A Case Study:  Using Defeasible Logic Programming to Model Recommendations 

about Students’ Learning Resources 

The process for generating recommendations of learning resources by an argument-

based recommender is different from the process adopted by most of the existing 

recommenders. However, they share the requirement of having access to prior 

knowledge about a collection of students, tasks, and learning resources, which can be 

codified as facts of a DeLP program, as illustrated in Figure 3. Facts provide 

information about the students, tasks, and resources being modeled. Also, rules can be 

defined to determine if two students or two tasks are similar. To define such rules, 

similarities between students and tasks can be calculated by applying probabilistic 

latent semantic analysis [14] or matrix factorization [15], among other techniques.  

Finally, the DeLP program will contain a set of postulates that describe the conditions 

under which a learning resource should be recommended to a given student. For 

instance, a resource is typically recommended to a student if the student likes the 

resource type.  However, even if the student likes the resource type, the resource will 

not be recommended if there is evidence that the resource was not useful to a similar 

student in the past. On the other hand, a resource will be recommended if it was useful 

for a task similar to the current one, albeit it was not useful to a similar student. An 

additional level of specificity that distinguishes between tasks for which a student finds 

a resource useful or not could be added if this information is available. This way, the 

argumentative process will deal with general facts and more specific facts that may be 

in conflict.  
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Facts about resources and their types, whether the resources were useful for students or tasks 

and whether a resource type is liked or disliked by a student 

resource_type(r1, video) 

resource_type(r2, manual) 

resource_type(r3, instructional_game) 

useful_for_task(t1, r1) 

useful_for_task(t1, r2) 

useful_for_task(t1, r3) 

useful_for_student(sam, r1) 

useful_for_student(sam, r2) 

~useful_for_student(sam, r3) 

likes_resource_type(peter, video) 

likes_resource_type(peter, instructional_game) 

dislikes_resource_type(peter, manual) 

Strict rules  determining whether two students or two tasks are similar 

similar_student(S1, S2)  ← [Computed elsewhere] 

similar_task(T1, T2) ← [Computed elsewhere] 

Defeasible rules (commonsense knowledge) defining the cases for which resource R should be 

recommended to student S during task T 

 

recommend(S, T, R) ⤙  resource_type(R, RT), likes_resource_type(S, RT) 

~recommend(S,T,R) ⤙  resource_type(R, RT),likes_resource_type(S, RT),            

                                similar_student(S1, S2), ~useful_for_student(S2 ,R) 

recommend(S,T,R) ⤙   resource_type(R,RT), likes_resource_type(S,RT), similar_student(S,S1), 

                                ~useful_for_student(S1,R),similar_task(T,T1), useful_for_task(T1,R) 

Figure 3: A sample DeLP program for modeling recommendations about resources for 

students  

As discussed in section 1.2, rules in a DeLP program are combined to support or reject 

a conclusion by building arguments. Figure 4 shows the arguments that have been 

computed to determine whether resource r2 should be recommended to Peter while he 

is completing task t1. In this example, the root argument of the dialectical tree is 

recommend(peter, t1 ,r2), which turns out to be defeated and hence we have no reason 

to believe that Peter will benefit from resource r2 while completing task t1.  
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Figure 4:  A sample dialectical tree associated with the query 

“recommend(peter,t1,r2)”, where the root argument is deemed as defeated. 

 

As another example, assume that the system is evaluating whether resource r3 should 

be recommended to Peter while he is completing task t1. Figure 5 presents a dialectical 

tree illustrating how arguments can be built in favor of such a recommendation.  The 

root argument of the dialectical tree is recommend(peter, t1, r3). Although there is a 

second argument that attacks  the root argument, the second argument is in turn defeated 

by a third argument, concluding that the recommendation under analysis should be 

made. 
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Figure 5:  A sample dialectical tree associated with the query 

“recommend(peter,t1,r3)”, where the root argument is deemed as undefeated. 

1.4 Opinion Mining and Argumentation: Contrasting Opinions 

and Viewpoints on the Internet 

Opinion mining refers to a number of different techniques (including datamining, 

sentiment analysis, etc.) which are used in text analysis for automatically identifying 

opinion and emotion.  Opinion mining is a very recent research area, and it provides a 

powerful resource for educational processes, as it allows students to better understand 

concepts and ideas which might be associated with different viewpoints.  

 

Argumentation and opinion mining can be combined into an interesting approach 

presented in [16] which results in argument-based opinion mining.  In contrast with 

other logical approaches to argumentation, an argument A for a conclusion C is 

essentially a set of statements that provide reasons to support C.  These statements can 

correspond to different information items available on the Internet (contents from 

reviews, tweets in Twitter, etc.).  For the sake of example, we will refer to tweets in 

what follows in order to present the associated framework [17]. We will take a sample 

topic to illustrate how argument-based opinion mining works. Consider for example 

the issue “abortion”. Some tweets on that topic could be as follows: 
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Tweet1= “government should ban #abortion, it means killing babies” 

Tweet2 = “#abortion is debatable, not all cases are to be equally considered” 

Tweet3=”#abortion is a right every woman has. Defend it” 

Tweet4= … 

 

We will refer to the set of topics or issues at hand as the query Q to be associated 

with a given argument (e.g. Q = “abortion” or  Q = “abortion, Argentina”). In addition 

to the notion of query, we will introduce the idea of context or criterion C.  This 

concept is intended to identify particular properties or features that we would like to 

consider associated with the query Q. We will aggregate these two elements when 

defining arguments, and hence will write (Q,C).  Thus, for example, C1 could be  a 

criterion that indicates that only tweets posted between timestamp T1 and T2 are to be 

selected. Then (Q,C1) will select only those tweets  that contain all the terms of query 

Q and have been posted in the time period [T1,T2]. Other examples of criteria that can 

be naturally applied are, for instance, requiring that those tweets were retweeted more 

than n times, requiring that every user that posted tweets T has at least m followers, etc.  

 

Finally, we will also assume a set S of possible sentiments. A possible range for S 

could be positive, negative and neutral2. For the sake of example, Tweet1 could be 

considered as a negative tweet towards abortion, whereas Tweet3 corresponds to a 

positive tweet on that topic. We will generalize the notion of sentiment associated with 

a single tweet to the notion of prevailing sentiment in a bunch of tweets (i.e., the 

sentiment that prevails, according to some criterion, e.g. percentage). In the same way, 

we will assume that sentiments might convey conflicting feelings or emotions (e.g. 

anger vs. happiness; boredom vs. excitement, positive vs. negative, etc.). We will 

abstract away which is the prevailing sentiment as well as existing conflicts through 

mapping functions Sent and Conflict, respectively.  Thus, Sent(T) will determine which 

is the sentiment value associated with a tweet T (as a singleton). As stated before, we 

will extend the intended meaning of Sent to an arbitrary set of tweets T={t1,t2….tk}, 

where every ti denotes a tweet, so that Sent(T) denotes the prevailing sentiment 

associated with T  (e.g. most tweets in T are positive, and hence we deem T as 

“positive”). 

Two sentiments Sent1 and Sent2 in Sent will be “in conflict” whenever Sent1 differs 

from Sent2. (e.g. positive will be in conflict with negative; neutral will be in conflict 

with negative). According to this, we can  say that a set of tweets T1 is in conflict with 

a set of tweets T2 whenever Sent(T1) differs from  Sent(T2). We further assume that 

all possible conflicts are “equally preferred” in the sense that a conflict between positive 

                                                           
2 This approach is used in some commercial platforms for assessing tweets in terms 

of a positive, negative or neutral value and the percentage of tweets corresponding to 

each value  (e.g. sentiment140.com). 
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and negative is as strong as a conflict between positive and neutral; the underlying idea 

is to identify the situation that the prevailing sentiments in both sets of tweets are not 

the same.  

Characterizing an Argument as a Set of Tweets. Arguments in Conflict and 

Opinion Trees  

For the sake of example, let us assume that we have a set T of 20000 tweets associated 

with the query “abortion”, and the context is given by “Argentina” and “years 2018-

2020” (e.g. we consider only tweets originated from Argentinean accounts posted in 

the period 2018-2020).  Note that in many cases we can easily identify a query because 

it was used as a hashtag (e.g. #abortion) within a thread of tweets. 

In our approach, an argument A based on opinion mining for a query Q under a 

criterion C is a set of tweets associated with (Q,C) with a prevailing sentiment Sent. 

Thus, following the previous example, for a query Q = “abortion" and a  criterion C 

corresponding to “all tweets in the period 2018-2020”, and assuming that the possible 

sentiments S= {pos, neg, neutral},  then the argument A for Q under C would be the 

subset of all tweets related to “abortion” restricted to the period 2018-2020. Assuming 

that e.g. 80% of the tweets have a negative connotation, then the prevailing sentiment 

Sent = neg. 

We have shown how to express arguments for particular queries under a certain 

criterion, associated with a given prevailing sentiment. Such arguments might be 

attacked by other arguments, which on their turn might be attacked, too. In 

argumentation theory [3], this leads to the notion of dialectical analysis, which can be 

associated with a tree-like structure in which arguments, counter-arguments, counter-

counter-arguments, and so on, are taken into account. The central idea underlying the 

exploration of possible attacks for a given argument is given by the notion of specificity. 

Suppose that an argument supporting the query Q=“abortion" is obtained, with a 

prevailing negative sentiment. If the original query Q is extended in some way into a 

new query Q’ that is more specific than Q (i.e. Q’ = Q ∪  {w}, for some particular word 

w), it could be the case that the argument supporting Q’ would have a different (possibly 

conflicting) prevailing sentiment. For example, more specific opinions about abortion 

are related to other topics, like for example ethics, social problems or programs, 

religious issues, etc. To explore all possible relationships associated with arguments 

returned for a specified query Q and criteria C, we can define a high-level algorithm to 

construct an opinion tree recursively as follows:3 

 

 

                                                           
3 The full-fledged description of the algorithm can be found in [16]. 
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Algorithm BuildOpinionTree 

 

Input: query Q, criterion C 

 

Output: Opinion Tree OT(Q) rooted in an argument A for Q under criterion C with 

prevailing sentiment Sent  

1. We start with an argument A obtained from the original query Q under a criterion C 

with a prevailing sentiment S, which will be the root of the tree.  

2. Next, we analyze within the tweets in A all relevant words that might be used to 

“extend” Q, by adding a new element (w) to the query, obtaining Q’ = Q ∪  {w}. 

3. Then, a new argument for Q’ under criterion C with prevailing sentiment S’ is 

obtained, which will be associated with a subtree rooted in the original argument A 

(i.e., the tree resulting from BuildOpinionTree(Q’,C)). 

It is also easy to see that for any query Q, the algorithm BuildOpinionTree finishes in 

finite time: given that a tweet may not contain more than 280 characters, the number of 

contained descriptors is finite, and therefore the algorithm will eventually stop, 

providing an opinion tree as an output. 

 

Figure 6.  Schematic overview of argument-based opinion mining. Based on a student 

query and a given context, an argument is computed along with possible conflicting 

arguments. The whole opinion tree is retrieved as an answer. 
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A Case Study: The Abortion Issue 

As a case study to illustrate our approach, we consider the abortion issue based on 

information from Twitter in December 2012, when the Michigan legislature was 

debating several regulations on abortion practices. Consider the query Q = “abortion", 

and a criterion C = {tweets posted less than 48 hours ago}. A root argument is computed 

for Q and C, obtaining an associated prevailing sentiment (negative). It should be 

remarked that the algorithm for building opinion trees avoids the repetition of any new 

descriptor used to extend the query associated with a node. The construction is 

performed depth-first, so that new descriptors are gradually introduced using a 

technique  specifically designed to guide term selection (outside the scope of this paper, 

for a detailed description see [16]. 

Figure 7 illustrates how the construction of an opinion tree for the query Q = “abortion" 

looks like. Distinguished symbols (+, -, =) are used to denote positive, negative and 

neutral sentiments, respectively. Note that the original query Q has cardinality 1, and 

further levels in the opinion tree refer to incrementally augmented queries (e.g. 

{“abortion", “michigan"}, or {“abortion", “murder"}). Leaves correspond to arguments 

associated with a query Q’ which cannot be further expanded, as the associated number 

of tweets is too small for any possible query Q’ U {w}, for some w. Furthermore, we 

can identify some subtrees in the Opinion Tree rooted in “abortion” which consist of 

nodes having all the same sentiment. In other words, further expanding a query into 

more complex queries does not change the prevailing sentiment associated with the root 

node. In other cases, expanding some queries results in a sentiment change (e.g. from 

“abortion" into {“abortion", “option"} or {“abortion", “wish"}). 

Integrating opinion trees into the learning process allows students to analyze public 

debate in a more systematic way while at the same time encourages social awareness 

and an interest in current affairs. Opinion trees help students synthesize complex 

information and analyze a specific topic from different perspectives. This approach 

helps improve logical and critical thinking. 
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Figure 7: An Opinion Tree for The Abortion Issue (computed from Twitter, 2012). 

Adapted from [18]. 

1.5 Shared Knowledge Awareness and Argumentation 

Shared Knowledge (SK) concerns the common knowledge constructed by a 

student group when carrying out a collaborative learning activity in a CSCL 

environment.4 In this setting, Shared Knowledge Awareness (SKA) has been defined 

as the consciousness on the SK that this student group has when performing a specific 

collaborative task in a restricted moment of time [19,20]. Indeed, the construction of 

SK is strongly related to the acquisition of an appropriate level of SKA, as being aware 

of any knowledge (in particular SK) implies learning something about it. 

 

Students’ acquisition of SKA in CSCL scenarios is not a simple task, and a number 

of questions that should be considered to reach it have been proposed [19]. However, 

it is difficult to ascertain how to provide mechanisms to model the construction of SKA 

in a real CSCL system. Indeed, this problem is related to different features, in particular 

                                                           
4 CSCL stands for “Computer Supported Collaborative Learning”. 
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with characterizing the students’ dialectical reasoning underlying negotiation processes 

when looking for an agreement or consensus about a given claim. 

 

In this section, we will illustrate how computational argumentation can contribute 

when modeling educational processes where different knowledge sources (associated 

with capabilities or domain knowledge corresponding to different students) can be 

integrated following an argumentative approach. We will consider DeLP as the 

underlying programming language to provide a support tool for dialectical discussions 

in a CSCL framework. Indeed, our framework will allow modeling the dialectical 

analysis carried out by participants in CSCL scenarios, helping them to identify the 

emerging SK and the explicit specification of its associated SKA. As a starting point, 

we will consider the individual knowledge constructed by different students when 

performing a collaborative task (probably expressed in natural language and stored in 

a generic CSCL platform).  

 

We depart from the assumption that the knowledge required for solving the 

collaborative task is complex, so that students should be able to integrate different 

perspectives and conflicting opinions about the task to be solved. Our goal is that 

participating students can make use of the reasoning and visualization capabilities 

provided by the argumentation system in order to support part of their SK construction 

as well as making explicit its associated SKA. Figure 8 illustrates the process of 

acquiring shared knowledge awareness through argumentation. As a result of this 

process, students will be able to identify what we will call Argument-Based Shared 

Knowledge (ArgSK): students are aware of how different conflicting pieces of 

knowledge are related to each other, why some of such pieces should be deemed as 

warranted (and some others should not), and how their own individual knowledge may 

be in conflict with other participants’ knowledge.    

 

Figure 7.  Schematic overview of argument-based shared knowledge awareness. Based 

on knowledge from individual students an intelligent agent builds shared knowledge, 

which is combined with a dialectic process to acquire shared knowledge awareness.  
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A Case Study:  Solving a Printer Configuration Problem Collaboratively5 

Consider the following case study: Computer Science students from three different 

universities U1, U2 and U3 (located in different cities) have to solve an activity 

collaboratively in a CSCL scenario. The activity is structured using the JIGSAW 

technique [21] and includes the task T of detecting good and bad features in different 

configurations of a personal computer model  called “pcu” (acronym for “PC for 

universities''), which is the computer model available in the computer labs of the three 

universities (e.g. the three labs have pcus with the same configuration, devices, etc.). 

The students are divided into small groups of three people, each of them belonging to 

a different university. Following the JIGSAW technique, each member of the group 

will be responsible for analyzing a different piece of knowledge when constructing 

his/her individual knowledge. Let us focus on one jigsaw group G formed by three 

students, namely S1, S2 and S3. As stated before, we will assume that S1, S2 and S3 are 

using a particular CSCL system to solve T, as they are located in different cities. For 

the sake of example, the students must learn about different topics related to pcus as 

follows: 1) S1 is assigned the topic “input/output devices''; 2) S2 is assigned the topic 

“memory devices”; and 3) S3 is assigned the topic “processors”.  

 

Let us assume that students have already constructed their individual knowledge 

and they are coming back to the group G to solve T. At this moment, S1, S2 and S3 have 

to present a well-organized report to other members of G about the topic each of them 

has studied. The immediate goal is to construct SK and SKA in order to solve T. As a 

part of their SK and SKA, students are offered to re-cast their knowledge using an 

argumentative formalism (such as DeLP), where arguments and their acceptance 

statuses can be computed automatically. 

  

Following our proposal, an automated argumentation platform is integrated with 

the CSCL scenario. It includes a knowledge base K (empty at the beginning), an 

inference engine for computing arguments and a suitable front-end for posing queries 

and visualizing results. First, each student Si exchanges (separately) messages with an 

intelligent agent about what he/she knows, and  the intelligent agent writes down this 

in terms of rules and facts. Following our example, suppose that student S1 has acquired 

knowledge about printers (as they are I/O devices). He/she has learned the following:  

hp1020 and hp1018 are models of laser printers. Laser printers work ok if the computer 

has a good RAM memory. Inkjet printers usually work ok with any kind of computer. 

Besides, S1 has checked the computer model “pcu” (the object of study) and has seen 

that there was a printer connected, namely the hp1020.  In the same way, S2 has studied 

memory devices. He/she has learned that a RAM memory of 256 Mb or more is usually 

good enough for a computer, unless you want to use it with a laser printer, since in 

such a case a RAM of 256 KB has slow access, which is usually not a good feature. In 

addition, S2  has checked the computer model “pcu” and has seen that the computer had 

256Mb of RAM memory (note that S2 does not know anything about processors or 

printers, he just knows that they appeared as related concepts when learning about 

memory devices). Concerning S3, he/she has individual knowledge about processors. 

                                                           
5 This example was originally presented in [20]. 
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He/she has learned that if a computer has a processor double-core, then the processor 

is usually fast. Pentium processors result in slow access time for RAM memory. An 

exception are Pentiums with the special swap technology, which do not have this 

problem. He/she has checked the computer model “pcu” and has seen that it has a 

Pentium processor with “swap technology”.6  

 

At the end of all the dialogues between S1, S2 and S3 with the intelligent agent, the 

knowledge base K stores the sum of the three students’ individual knowledge, which 

could have been written down by the intelligent agent as follows: 

Facts about the computer in the lab 

printer(pcu, hp1020)                 %  fact from student S1 

has_ram (pcu,256)                     %  fact from student S2 

processor (pcu,pentium)      %  fact from student S3 

Defeasible rules (Commonsense knowledge) - C stands for an arbitrary computer   

Knowledge about printers coming from S1 

printer(C, laser) ⤙  printer(C, hp1020)  

printer(C, laser) ⤙  printer(C, hp1018)  

printer_ok(C)⤙  ram_memory(C,good), printer(C, laser)  

printer_ok(C)⤙  printer(C, inkjet)  

 

Knowledge about RAM memories coming from S2 

ram_memory (C, good)⤙  has_ram (C,X), X>=256  

ram_slow_access(C) ⤙   has_ram (C,X), X=256, printer(X,laser)  

~ram_memory (C,good) ⤙  ram_slow_access (C)  

Knowledge about processors coming from  S3 

processor(C, fast) ⤙  processor(C,double_core) 

ram_slow_access (C)⤙  processor(C,pentium) 

~ram_slow_access (C)   ⤙ processor(C,pentium), has_processor(pentium,swap_tech)  

 

Now, consider that as part of task T to solve (detecting good and bad features in 

different configurations of a “pcu”), S1, S2 and S3 are discussing about the piece of 

knowledge “printer_ok(pc)”, which stands for the claim “is it ok to have a printer 

connected to the computer pcu?”. By analyzing the individual knowledge provided by 

each Si separately, the members of G cannot infer anything (except from the facts 

                                                           
6 Names and values used here are fictitious. They are just considered for the sake of 

the example and not necessarily according to a real-world situation. 
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provided). However, if they jointly consider all the information stored in K (which 

accounts for part of their SK) they can rely on DeLP to automatically compute a 

dialectical tree rooted in the above claim, which will include all possible combinations 

of arguments and defeaters related to the claim. This way, they can guarantee that those 

pieces of knowledge subject to dialectical discussions will be part of the SK only if  

they are warranted on the basis of the joint knowledge of the group, thus avoiding a 

dialectical discussion based on incomplete and biased perceptions of reality. Hence, if 

the claim results to be supported by a warranted argument, then the above piece of 

knowledge can be part of the argument-based shared knowledge (ArgSK) for the group 

on the basis of rational and justified information.  

In this particular example, S1, S2 and S3 will obtain a warranted argument supporting 

the claim “printer_ok(pcu)” (as the warranted argument Arg1 supports it), and they will 

add the claim to their ArgSK. Note that the claim is deemed as warranted by the 

underlying argumentation system, based on the dialectical tree shown in Figure 3. 

Besides, S1, S2 and S3 will visualize the dialectical tree shown in Figure 3 (left), which 

explicitates a rational justification of the obtained results. Indeed, it can be seen that 

there exists an argument Arg1 supporting “printer_ok(pcu)”, which can be obtained by 

combining knowledge from S1 and  S2. The argument is based on knowing that “pcu” 

has enough RAM memory to support hp1020, the laser printer connected to it. 

However, Arg1 is defeated by Arg2, which supports the claim   “~ram_memory (pcu, 

good)” (the student who studied memory devices provided a defeasible rule which 

states that 256 Mb usually do not suffice for a laser printer to run ok). But this argument 

Arg2 is on its turn defeated by Arg3 standing for “~ram_slow_access(pcu)” (the student 

who studied processors provided a defeasible rule which states that computers with 

Pentium processors with swap technology, as it is the case here, do not have problems 

with RAM of 256 Mb). This way, the visualization of the tree will be linked to the 

ArgSKA associated with the claim under consideration, helping S1, S2 and S3 to be 

aware of their own SK.  Later on, S1, S2 and S3  will be able to use the piece of warranted 

knowledge (the fact that the printer connected will work ok) when going further on the 

resolution of T.   
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Figure 8: Outline of the dialectical analysis obtained for the claim “is it ok to have a 

printer connected to the computer pcu?”. Left: Arg1 is warranted and ultimately 

prevails, as it is defeated by Arg2, which is on its turn defeated by Arg3. Right: the 

argument contents provided by the argumentation engine in DeLP. 

1.6  Conclusions and Related Work 

In this chapter we have analyzed the role of computational argumentation as a metaphor 

for handling incomplete and potentially contradictory information. The task of 

contrasting alternative arguments and determining which ones are to be ultimately 

accepted is core to many educational processes in which critical thinking is involved. 

Even though argumentation has been central to education for many centuries in  

Western civilization, it has not been until recently that more evolved computational 

models for argumentation have been developed.  We contend that these models can 

provide effective alternatives for new conceptualizations that improve and empower 

analytical thinking for both students and teachers. 

 

In the last years, argumentation has had considerable growth and consolidation, 

establishing itself as a discipline in its own right within the research community in 

Artificial Intelligence. Argument-based recommender systems (one of the applications 

discussed in this chapter) have received particular attention when context-based 

information is taken into account [22,23,24]. Another important aspect that needs to be 

considered in the learning environment is the notion of trust. Students or instructors 

may trust certain learning resources because other users trusted by them recommend 

those resources, or simply because they trust the resources’ sources. Trust is subjective, 

not always symmetric or transitive, context dependent, dynamic, and defeasible. Hence, 

as discussed in [25], trust can be naturally modeled using an argumentative framework, 

playing a useful role at the moment of integrating the notion of trust to support any 

learning process.  
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Recent research [26,27] has been focused on integrating persuasion and computational 

argumentation in a unified system, leading towards a so-called Automated Persuasion 

System (APS). Persuasion is an activity that involves one party trying to induce another 

party to believe something or to do something. It is an important and multifaceted 

human facility. As the authors point out, persuasion is present in many human activities 

(such as a doctor persuading a patient to drink less alcohol, a road safety expert 

persuading drivers to not text while driving, or an online safety expert persuading users 

of social media sites to not reveal too much personal information online). An automated 

persuasion system (APS) is a system that can engage in a dialogue with a user (the 

persuadee) in order to persuade the persuadee to do (or not do) some action or to believe 

(or not believe) something. To do this, an APS aims to use convincing arguments in 

order to persuade the persuadee. Computational persuasion is the study of formal 

models of dialogues involving arguments and counterarguments, user models, and 

strategies, for APSs. The authors claim that a promising application area for 

computational persuasion is in behavior change (particularly in the context of 

healthcare organizations, where there is much interest in changing behavior of 

particular groups of people away from actions that are harmful to themselves and/or to 

others around them).  In our opinion, education  is also an area where APS could play 

an important role (as students need typically to be persuaded of carrying out different 

goals as part of educational processes ―e.g., carrying out some particular kind of 

exercise, mastering some skill, etc.). 

 

Along this chapter, we have carried out an analysis of the impact and possibilities of 

computational argumentation from different perspectives, based on some common 

elements of argumentation provided in Section 1.2  (including a brief account of 

Defeasible Logic Programming). In Section 1.3 we showed how argumentation and 

traditional recommender systems  can be unified into argument-based recommender 

systems, in which recommendations associated with the outcome of a particular query 

on a certain domain can be backed up by arguments that have emerged as ultimately 

accepted after performing a dialectical analysis.  Then, in Section 1.4 we moved into 

mining opinions from user content knowledge (particularly information in Twitter). We 

showed that argumentation can provide the backbone for an enhanced model in which 

arguments are given by sets of information units (e.g. tweets) that have a prevailing 

sentiment. Such arguments could also be contrasted using a dialectical analysis, 

identifying so-called “opinion trees” (an alternative form for representing dialectical 

analysis).  Finally, in Section 1.5 we analyzed the concept of shared knowledge 

awareness in a group of students. We showed that for solving a particular problem (e.g. 

making a printer work), students might need to combine pieces of information from 

their own knowledge, and that potential conflicts and inconsistencies might arise. Once 

again, argumentation comes out as a solution for such situations, allowing students to 

be aware of their “shared knowledge” that contributes to finding a solution for a given 

problem. 

In summary, we have shown that computational argumentation can indeed provide a 

powerful model for recasting and enhancing traditional educational processes 

(particularly those in which incomplete and potentially inconsistent information is at 
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hand, and different, alternative viewpoints have to be assessed and contrasted). We 

think that the three alternatives explored in this chapter (argument-based 

recommendation, argument-based opinion mining and argument-based shared 

knowledge awareness) illustrate the power of argumentation as a backbone for 

developing new, different intelligent techniques and approaches for educational 

purposes. Even though many advances have been achieved, the most promising results 

in this direction seem still to be seen in the future. 
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