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ABSTRACT
Causal graph extraction from news has the potential to aid in the understanding
of complex scenarios. In particular, it can help explain and predict events, as well
as conjecture about possible cause-effect connections. However, limited work has
addressed the problem of large-scale extraction of causal graphs from news articles.
This article presents a novel framework for extracting causal graphs from digital
text media. The framework relies on topic-relevant variables representing terms and
ongoing events that are selected from a domain under analysis by applying specially
developed information retrieval and natural language processing methods. Events are
represented as event-phrase embeddings, whichmake it possible to group similar events
into semantically cohesive clusters. A time series of the selected variables is given as
input to a causal structure learning techniques to learn a causal graph associated with
the topic that is being examined. The complete framework is applied to the New York
Times dataset, which covers news for a period of 246 months (roughly 20 years), and is
illustrated through a case study. An initial evaluation based on synthetic data is carried
out to gain insight into the most effective time-series causality learning techniques.
This evaluation comprises a systematic analysis of nine state-of-the-art causal structure
learning techniques and two novel ensemble methods derived from the most effective
techniques. Subsequently, the complete framework based on themost promising causal
structure learning technique is evaluated with domain experts in a real-world scenario
through the use of the presented case study. The proposed analysis offers valuable
insights into the problems of identifying topic-relevant variables from large volumes of
news and learning causal graphs from time series.
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INTRODUCTION
Causal modeling aims to determine the cause–effect relations among a set of variables.
A variable is the basic building block of causal models and represents a property or
descriptor that can take multiple values (Glymour, Pearl & Jewell, 2016). The extraction of
variables and their causal relations from news has the potential to aid in the understanding
of complex scenarios. In particular, it can help explain and predict events, as well as
conjecture about possible causality associations. Although the problem of causal modeling
has attracted increasing attention in the Computer Science discipline (Pearl, 2009;
Bareinboim & Pearl, 2015; Peters, Janzing & Schölkopf, 2017; Meinshausen et al., 2020),
limited work has been devoted to the problem of large-scale extraction of causal graphs
from news articles. Causality can provide tools to better understand machine learning
models and their applicability. However, black-box predictive models have typically
dominated machine learning-based decision making, with a lack of understanding of
cause–effect connections (Rudin & Radin, 2019). On the other hand, causality has been
central to econometrics, where most methods rely either on the analysis of structural
models (Heckman & Vytlacil, 2007) or on the application of Granger’s idea of causation
based on determining whether past values of a time series provide unique information to
forecast future values of another (Granger, 1969).

To discover causal relations, interventions and manipulations are typically necessary
as part of a randomized experiment. However, undertaking such experiments is usually
impractical or even impossible. As a consequence, to address these limitations, many
methods for causal discovery usually rely on observational data only and a set of (strong)
assumptions. The relatively recent availability of large volumes of data compensates to a
certain degree for the infeasibility of experimentation, offering an opportunity to collect
and exploit observational data for causal modeling and analysis (Varian, 2014).

Causality extraction from text has been previously explored mostly as a relation
extraction problem, which can be addressed as a specific information extraction task.
Existing approaches typically rely on the use of lexico-syntactic patterns (Joshi et al., 2010),
supervised learning (Khetan et al., 2022), and bootstrapping (Heindorf et al., 2020). These
approaches apply local analysis methods to extract explicit causal relations from text by
adopting an intra- or inter-sentence scheme. However, these methods are unable to detect
implicit causal relations that can be inferred from the analysis of time series data built from
sentences coming from several documents. Also, due to the limited availability of ground
truth for causal discovery, few studies have been carried out in the context of a real-world
application. Finally, another limitation of previous approaches to causal extraction from
text is the absence of a clear semantics associated with the variables that represent the
cause–effect relations. In other words, variables are usually terms identified in text, with
no distinction between general terms and variables built from event mentions.

The work presented in this article attempts to overcome these limitations. It proposes a
methodology for causal graph extraction from news and presents comparative studies that
allow to address the following research questions:
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• RQ1. What state-of-the-art methods for time-series causality learning are effective in
generalized synthetic data?
• RQ2.Which of the most promising methods for time-series causality learning identified
through RQ1 are also effective in real-world data extracted from news?
• RQ3. What type of variables extracted from a large corpus of news is effective for
building interpretable causal graphs on a topic under analysis?

The proposed approach combines methods coming from information retrieval, natural
language processing, machine learning, and Econometrics into a framework that extracts
variables from large volumes of text to build highly interpretable causal models. The
extracted variables represent terms (unigrams, bigrams and trigrams) and ongoing event
clusters. The terms are selected from topic-relevant sentences using a supervised term-
weighting scheme proposed and evaluated in our previous work (Maisonnave et al., 2021a;
Maisonnave et al., 2020). In the meantime, the ongoing event clusters are computed by
clustering event phrase embeddings, where the task of detecting ongoing events is defined
and evaluated by the authors in Maisonnave et al. (2021b). A time series of the selected
variables is used to learn a causal graph associated with the topic that is being examined.
The framework is applied to a case study using real-world data extracted from a 246-month
period (roughly 20 years) of news from the New York Times (NYT) corpus (Sandhaus,
2008). To answer research question RQ1 an evaluation based on synthetic data from
TETRAD (Scheines et al., 1998) and CauseMe (Runge et al., 2019a) is carried out to gain
insight into the selection of time-series causality learning techniques. This evaluation
comprises a systematic analysis of nine state-of-the-art causal structure learning techniques
and two ensemble methods derived from the most effective techniques. To address RQ2
the proposed framework applies the most promising methods identified through RQ1 to
extract causal relations from news on a topic under analysis. Then, a comparative study
of the candidate causal learning methods is conducted based on assessments provided
by domain experts. Finally, to answer RQ3 the two types of variables extracted by the
framework are analyzed, namely general terms (unigrams, bigrams, and trigrams) and
ongoing event clusters. Then, an evaluation of causal relations containing each type of
variables is performed based on assessments derived from experts. This allows investigating
whether there tends to be more agreement among experts when the variables representing
potential causes and effects are of a specific type. It also allows determining if the evaluated
causal extraction methods are more effective if the analysis is restricted to a certain type of
variables.

Overall, the contributions of this work can be summarized as follows:

• A framework that combines term selection and event detection to build a time series
that is used to learn causal models from large volumes of text. The framework introduces
a novel method for building event-phrase embeddings, which groups events extracted
from news into semantically cohesive event clusters.
• An extensive evaluation on synthetic data of nine state-of-the-art causal structure
learning techniques and two novel ensemble techniques derived from the most effective
ones.
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• The application of the presented framework to a case study that allows to illustrate the
proposed causal graph extraction methodology and to further evaluate the analyzed
causality learning techniques in a real-world scenario. Also, as a byproduct of the
evaluation, we offer a dataset consisting of domain expert causality assessments on pairs
of variables extracted from real-world data.

The data and full code of the methods used by the framework and to carry out the
experiments are made available to allow reproducibility.

RELATED WORK
In Computer Science, approaches to causality have been mostly centered around
probabilistic graphical models (Koller & Friedman, 2009), which are graphical
representations of data and their dependency relationships. Bayesian networks (Pearl,
2009) are a kind of probabilistic graphical model used for causal inference by capturing
both conditionally dependent and conditionally independent relations between random
variables by means of a directed acyclic graph (DAG). Meanwhile, the study of the
concept of causality is a central and long-standing issue in the field of Econometrics,
where it has been addressed mainly by methods derived either from the analysis of
structural models (Heckman & Vytlacil, 2007) or the application of the Granger Causality
test (Granger, 1969). Both approaches are based on two principles: (1) a cause precedes the
effect, and (2) the cause produces unique changes in the effect, so past values of the cause
help predict future values of the effect. In the case of causal structure models, different
techniques have been developed, which are typically classified into three main categories,
namely (1) independence-based causal structure learning (Spirtes & Glymour, 1991; Runge
et al., 2019b), (2) restricted structural causal models (Shimizu et al., 2006; Shimizu et al.,
2011), and (3) autoregressivemodels (Granger, 1969; Schreiber, 2000; Sims, 1980;Nicholson,
Matteson & Bien, 2017; Chiquet et al., 2008). Autoregressive models are defined exclusively
for time series, where lagged variables(i.e., dependent variables that are lagged in time) play
a key role. It is worth mentioning that if we combine time-lagged and non-time-lagged
variables, the autoregressive approach can be seen also as an independence-based approach
with respect to the non-time-lagged variables.

Several previous works have addressed the problem of causal structure learning
from text. Silverstein et al. (2000) propose a series of algorithms that combine different
heuristics to identify causal relationships from heterogeneous datasets. In particular, the
algorithms were run on large volumes of text from news that cover different topics and
have demonstrated to have the capability of efficiently returning a number of causal
relationships and not-directly-causal relationships. Another approach for extracting causal
relations from text was presented by Girju & Moldovan (2002), where a semi-automatic
method is proposed to identify lexico-syntactic patterns referring to causation. A system for
acquiring causal knowledge from text was proposed by Sanchez-Graillet & Poesio (2004).
The system identifies sentences that specify causal relations and builds Bayesian networks
by extracting causal patterns from the sentences. Dehkharghani et al. (2014) proposed a
method for causal rule discovery that combines sentiment analysis and association rule
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mining. Another work proposed in Heindorf et al. (2020) extracts claimed causal relations
from the Web to induce the CauseNet causality graph, containing approximately 200,000
relations. The above works take linguistic or data mining approaches, where certain
syntactic regularities that are manually crafted or automatically generated using machine
learning techniques allow to detect pairs of terms potentially related by a causal relation.
Since many of these contributions rely on detecting explicit patterns or causality cues
in texts, their focus is on inferring the existence of causality links that are explicit in
continuous spans of text. Since our approach is based on building time series on term and
event frequencies throughout the whole dataset, we can detect implicit causal links between
words that are not even present in the same text span (or article). A recent survey that
reviews techniques for the extraction of explicit and implicit inter- and intra-sentential
causality from natural language text is presented by Yang, Han & Poon (2021).

The framework described in this article is closely related to the one presented byRadinsky,
Davidovich & Markovitch (2012), where semantic natural language modeling, machine
learning, and data mining techniques are applied to 150 years of news articles to identify
causal predictors of events. In that work, the authors apply semantic natural language
modeling techniques to titles containing certain predefined causality patterns. This allows
them to find causal links that are not explicit in texts using generalizations supported by
a vast amount of world knowledge ontologies mined from Linked Data (Bizer, Heath &
Berners-Lee, 2011). By using hand-crafted rules supported by these ontologies, the authors
are able to extract causality pairs with high precision. However, this is gained at the expense
of recall, which is only 10%. Although the authors find additional causality patterns through
generalization, they still need to detect mentions to causality to trigger generalizations. In
contrast to that contributions, we do not rely on ontologies, detection of semantic pattern,
or explicit mentions of causality in texts. Also, different from our approach, the focus
of Radinsky, Davidovich & Markovitch (2012) is not the identification and extraction of
causality but the prediction of future events caused by a given event.

Another related work was presented by Balashankar et al. (2019), where the authors
describe a framework that allows to build a predictive causal graph by measuring how
the occurrence of a word in the news influences the occurrence of other words in the
future supported by the concept of Granger Causality. This work is closely related to ours.
However, we identified several limitations in their contribution, which we address in our
work. First, the authors only apply one technique of causality detection, i.e., the Granger
Causality test. Second, since these authors work with existing methods for detecting event
triggers based on the ACE 2005 task description (Walker et al., 2006), their work does
not incorporate the concept of ongoing events. Lastly, because their focus is on stock
price prediction, they are not concerned with explaining or evaluating the resulting causal
graphs.

Here, we extend the application of causal structure learning techniques to uncover
relations among variables representing terms and events extracted from digital media,
aiming to detect a network of causal links among these variables. Because our approach
does not require explicit mentions to causality or the identification of semantic patterns and
does not require ontologies either, it could be easily applied to different domains with little
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or no modification. Even more, our framework could be generalized to other languages
as long as a model for ongoing event detection in the required language is available. We
believe our work is especially well-suited as a tool to understand complex scenarios or
topics using only a set of texts describing them.

AN OVERVIEW OF CAUSAL STRUCTURE LEARNING
Causal learning is the process of inferring a causal model from data (Peters, Janzing &
Schölkopf, 2017) while causal structure learning is the process of learning the causal graph
or certain aspects of it (Heinze-Deml, Maathuis & Meinshausen, 2018). In this work, we
address the causal structure learning problem, where data are presented as a time series
of variables that stand for terms or events. A variety of techniques have been proposed in
the literature to address causal structure learning. This section outlines and evaluates nine
state-of-the-art and two ensemble techniques for causal structure learning from time series
of independent and identically distributed random variables. The goal of this analysis is to
identify the most promising techniques with the purpose of incorporating them into the
proposed causal learning framework.

The analyzed techniques for causal structure learning are classified into three main
categories, namely (1) independence-based causal structure learning, (2) restricted
structural causal models, and (3) autoregressive models. A general overview of the analyzed
causal structure learning techniques is presented in Fig. 1.

Independence-based causal structure learning relies on two main assumptions: the
Markov property for directed graphs and faithfulness (Koller & Friedman, 2009). These
assumptions allow estimating the Markov equivalence classes of the DAG from the
observational data. All DAGs in an equivalence class have the same skeleton (i.e., the
causal graph with undirected edges) and the same v-structures (i.e., the same induced
subgraphs of the form X→ Y ← Z ). However, the direction of some edges may not be
determined. Since this work analyzes non-contemporary causalities, the direction of time
can be used to determine the direction of the edges that remain undirected. That is, since
the cause has to happen before the effect, it is known that the arrows cannot go back in
time. Using this criterion, a fully directed graph is obtained from the independence-based
techniques used. For the present work, we consider PC (Spirtes & Glymour, 1991) and
PCMCI (Runge et al., 2019b) as two representative techniques based on independence.
The TIGRAMITE package (https://github.com/jakobrunge/tigramite) (Runge et al., 2019b)
is used to evaluate both techniques and to analyze the conditional independencies in the
observed data through a partial correlation test (ParCor). This test estimates the partial
correlations by means of a linear regression computed with ordinary least squares and
a non-zero Pearson linear correlation test in the residuals. Other non-linear conditional
independence tests are not included because of their prohibitive computation time.

The techniques based on restricted structural causal models incorporate additional
assumptions to obtain identifiability. For instance, in the case of non-Gaussian linear
models (LiNGAM), it is possible to analyze the asymmetry between cause and effect
to distinguish cause from effect. This is possible because the regression residuals are
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Figure 1 Overview of time series causal structure learning techniques analyzed in this work. These
techniques take a time series of variables and generate a causal graph. The analyzed techniques are divided
into independence-based models, restricted structural models, autoregressive models, and ensemble mod-
els. The ensemble models combine Direct-LiNGAM, PCMCI, VAR, and PC (which proved to be the four
most effective techniques according to evaluations carried out on synthetic data).

Full-size DOI: 10.7717/peerjcs.1066/fig-1

independent of the predictor only for the correct causal direction. This work analyzes two
techniques based on restricted structural models, namely ICA-LiNGAM (Shimizu et al.,
2006) and Direct-LiNGAM (Shimizu et al., 2011).

The techniques based on autoregressive models are defined exclusively for time series
and are based on determining whether past values of a variable X offer unique information
(i.e., not provided by other variables) to predict or explain future values of another
variable Y . If this is the case, it is possible to hypothesize that X→ Y . This idea gives
rise to the statistical concept of causality known as Granger Causality (Granger, 1969).
This work analyzes five techniques for inferring causal structures in time series based on
these principles: (1) Lasso-Granger (Granger, 1969), (2) Transfer Entropy (Schreiber, 2000),
(3) VAR (Sims, 1980), (4) BigVAR (Nicholson, Matteson & Bien, 2017), and (5) SIMoNe
(Chiquet et al., 2008).

Two ensemble techniques are also implemented by combining the four most effective
state-of-the-art causal structure learning techniques (Direct-LiNGAM, PCMCI, VAR,
and PC) based on the evaluations carried out on synthetic data (to be presented in
the next section). The first ensemble technique, referred to as ensemble∩, adds a causal
relation only when the four best techniques agree on including it. On the other hand, the
second ensemble technique, called ensemble∪, adds a causal relation when any of the four
techniques includes it. Finally, for the sake of comparison, a baseline model, referred to
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Figure 2 Framework for causal graph extraction from digital media. The framework takes as input a
topic description and a corpus of news articles. It then applies eight steps aimed at building a causal graph
associated with the topic of interest.

Full-size DOI: 10.7717/peerjcs.1066/fig-2

as Random is also considered. The Random technique decides on a random basis with
probability 0.5 whether to add or not each potential edge to the graph.

A FRAMEWORK FOR CAUSAL LEARNING FROM NEWS
This section describes the proposed framework, which provides support to experts while
trying to analyze a specific topic by semi-automatically identifying relevant variables
associated with a given topic and suggesting potential causal relations among these
variables to build a causal graph. A diagram of the framework for building a causal graph
from digital text media is presented in Fig. 2. The framework completes the following steps:

• Step 1. Filter topic-relevant sentences from a collection of news. Given a topic
description the framework selects those sentences that match the topic. A topic can
be represented in a variety of ways. Examples of simple topic representations are n-
grams or sets of n-grams. However, more complex schemes for representing topics can
be naturally adopted by the framework, including machine-centered representations,
such as vector space models or multimodal mixture models, and human-centered
representations, such as concept maps.
• Step 2. Select terms from the topic-relevant sentences. The selection of relevant terms
(unigrams, bigrams, and trigrams) from the given sentences relies on FDDβ , a supervised
term-weighting scheme proposed and evaluated by the Maisonnave et al. (2021a) and
Maisonnave et al. (2020). FDDβ weights terms based on two relevancy scores. The first
score is referred to as descriptive relevance (DESCR) and represents the importance of a
term to describe the topic. Given a term ti and a topic Tk the DESCR score is expressed
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as:

DESCR(ti,Tk)=
|dj : ti ∈ dj∧dj ∈Tk |

|dj : dj ∈Tk |
.

In the above formula ti ∈ dj stands for the term ti occurring in the document dj , while
dj ∈ Tk stands for the document dj being relevant to the topic Tk . The second score
represents the discriminative relevance (DISCR). This score is global to the collection
and is computed for a term ti and a topic Tk as follows:

DISCR(ti,Tk)=
|dj : ti ∈ dj∧dj ∈Tk |

|dj : ti ∈ dj |
.

The FDDβ score combines the DESCR and DISCR scores as follows:

FDDβ(ti,Tk)= (1+β2)
DISCR(ti,Tk)×DESCR(ti,Tk)

(β2×DISCR(ti,Tk))+DESCR(ti,Tk)
.

The tunable parameter β is a positive real factor that offers a means to favor descriptive
relevance over discriminative relevance (by using a β value higher than 1) or the other
way around (by using a β value smaller than 1). Human-subject studies reported
by Maisonnave et al. (2021a) indicate that a β = 0.477 offers a good balance between
descriptive and discriminative power, with a Pearson correlation of 0.798 between
relevance values assigned by domain experts and those assigned by FDDβ . Note that
FDDβ is derived from the Fβ formula, known as F-score or F-measure, traditionally
used in information retrieval, where β is chosen such that β > 1 assigns more weight to
recall, while β < 1 favors precision. While we adopt Fβ as the term-weighting scheme
in our framework, other supervised or unsupervised weighting schemes such as those
investigated in (Moreo, Esuli & Sebastiani, 2018) can be naturally used to guide the
selection of terms from topic-relevant sentences.
• Step 3. Detect ongoing events from the topic-relevant sentences. Event Detection
(ED) is the task of automatically identifying event mentions in text (Zhang, Ji & Sil,
2019; Nguyen & Grishman, 2018). An event mention is represented by an event trigger,
which is the word that most clearly expresses the occurrence of the event. A specific
ED task is Ongoing Event Detection (OED), where the goal is to detect ongoing event
mentions as opposed to historical, future, hypothetical, or other forms or events that
are neither fresh nor current. The rationale behind focusing on ongoing events only is
based on the need of building time series of events with the ultimate goal of learning a
causal graph. Therefore, it is required that the detected events are ongoing events at the
moment they are reported in the news. In previous work, we defined and extensively
evaluated the OED task (Maisonnave et al., 2021b). Also, we publicly released a dataset
consisting of 2,000 news extracts from the NYT corpus containing ongoing event
annotations (Maisonnave et al., 2019). A model based on a recurrent neural network
architecture that uses contextual word and sentence BERT embeddings (Devlin et al.,
2018) demonstrated to be highly effective in the OED task, achieving an F1-score of 0.704
on the testing set. In that previous work, we used a pre-trained BERT (Bidirectional
Encoder Representations from Transformers) model to build the word and sentence
embeddings. BERT is a transformer-based deep language model used for NLP. We built
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1GloVe vectors pretrained on an English
corpus (https://spacy.io/models/en#en_
core_web_lg)

the BERT word embeddings using the sum of the last four layers of the BERT pre-trained
model. Similarly, the BERT sentence embeddings were built by adding the BERT word
embedding for all the words in the sentence.
• Step 4. Construct event phrase embeddings. An event-phrase embedding representa-
tion based on GloVe vectors 1 (with dimension 300) is built for each event trigger ek in
each sentences or phrase P = w1,w2,...,wn as follows:

EPER(ek,P)=
∑
wi∈P

1
(|k− i|+1)2

·GloVe(wi), (1)

where the event trigger ek is equal to the word wk for some k, 1≤ k ≤ n. The EPER
representation allows to create a phrase embedding that accounts for the GloVe
representation of each word wi in P with a quadratic penalization based on the distance
of wi to ek .
• Step 5. Group events into semantically cohesive clusters. Clustering is applied to
group similar event-phrase embeddings. Clustering event-phrase embeddings rather
than clustering event triggers makes it possible to group events that have a similar
representation. This overcomes the problem of dealing with lexically different event
mentions that are conceptually associated as independent entities with no relation to
each other. Since the number of event representations is typically very large, the highly
efficientMiniBatch KMeans (Sculley, 2010) algorithm is applied for clustering. However,
other efficient variants of the KMeans algorithm, such as the one presented in Kanungo
et al. (2002) could be applied. A heuristic such as the Elbow method (Thorndike, 1953)
is applied to determine the number of clusters.
• Step 6. Build a dataset of relevant variables observed over time. A dataset is
constructed containing measurements of the observations of terms and event clusters
occurrences across time.
• Step 7. Construct a time series of relevant variables. A time series is generated with
the terms and event clusters at the desired temporal granularity (e.g., monthly, weekly,
daily, etc.).
• Step 8. Learn a causal structure for the given variables.A causal graph is learned where
the nodes are the variables (terms and event clusters) identified in steps 2 and 5. The
edges of the graph are the causal relations learned by applying a causal structure learning
technique to the time series generated in Step 7.

It is worthmentioning that the proposed framework has several parameters that potential
users could adjust to tailor it to the specific user needs. In step 1, the method adopted
to filter sentences relevant to a topic is up to the user (e.g., querying a search engine,
string-match filtering, etc.). In Step 2, the user can configure the β value according to
the specific needs. In Step 5, the user should analyze different K values for the KMeans
algorithm to choose the one that better suits the use case under analysis. Steps 1 through
5 provide the user with candidate variables to include in the causal graph. The user can
manually inspect them and include all of them or only a subset. Lastly, in Step 7, the user
might want to choose the level of granularity for the time series (i.e., monthly, weekly,
daily, etc.).
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APPLYING THE FRAMEWORK
This section describes the application of the proposed framework to a case study and
evaluates its performance through a user study with domain experts.

Case study
The full NYT corpus, covering a period of 246months (roughly 20 years), is used as a source
of news articles. The topic ‘‘Iraq’’ is chosen to illustrate the application of the framework.
Iraq was selected for the case study because it represents the geopolitical entity (GPE)
outside the United States with the highest number of mentions in the analyzed corpus
based on the spaCy’s named entity recognizer (https://spacy.io/). The rationale for choosing
a GPE outside the United States is that it allows to carry out a more focused and coherent
analysis. Note, however, that any other topic, including another GPE, organization name,
person name, or economic, social, political, or natural phenomenon with a sufficiently
large number of mentions in the corpus could be chosen as a case study. The application
of the framework is presented next.

• Step 1. For the sake of simplicity we assume that a topic is characterized by an n-gram
or set of n-grams. A sentence is said to be relevant to a topic if it contains a mention of
any of the n-grams associated with the topic. Since in this case study, we use the GPE
‘‘Iraq’’ as the description of the topic of interest, all the sentences containing the term
‘‘Iraq’’ are selected from the NYT corpus, resulting in 180,206 mentions in 170,497
unique sentences.
• Step 2. The FDDβ score was used to weight, rank, and select terms from the set of topic-
relevant sentences. Note that since FDDβ is a supervised term-weighting technique,
a sample of sentences non-relevant to the given topic is also needed. Consequently,
170,497 non-relevant sentences (the same number as relevant sentences) were randomly
collected from the NYT corpus. Finally, ten topic-relevant terms are selected by applying
the FDD β scheme with β = 0.477 to the set of relevant and non-relevant sentences,
resulting in the list of terms presented in Table 1.
• Step 3. A total of 498,560 ongoing event mentions are detected by applying the OED
task on the 170,497 sentences related to ‘‘Iraq’’ selected in Step 1.
• Step 4. An event-phrase embedding representation is built for each event mention
detected in Step 3.
• Step 5. MiniBatch KMeans is applied to group the 498,560 event-phrase embedding
representations built in Step 4 into 1,000 clusters. The value K = 1,000 is selected by
applying the Elbow method (Thorndike, 1953). Only six highly cohesive clusters with a
clear semantic and containing a large number of event mentions are selected to define
event cluster variables. The event clusters selected for this analysis are described in
Table 2.
• Step 6. Measurements of the observations of the sixteen selected variables (ten terms
and six event clusters) across time are collected in a dataset.
• Step 7. A monthly time series of length 246 (January 1987–June 2007) of the sixteen
selected variables (ten terms and six event clusters) is built. Note that a different
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Table 1 Terms identified during Step 2.

Term

‘‘weapons mass destruction’’
‘‘Persian Gulf war’’
‘‘United Nations Security’’
‘‘Iraq invasion Kuwait’’
‘‘chemical biological weapons’’
‘‘military action Iraq’’
‘‘United States’’
‘‘war Iraq’’
‘‘Saddam Hussein’’
‘‘Bush administration’’

granularity (e.g., weekly or daily) or a different number of variables could be used to
build the time series. As an example, we present in Fig. 3A the resulting time series
built by the framework for the events Military Action (C249) and Death Reports

(C109). Another example of time series for the terms ‘‘military action iraq’’, ‘‘Iraq
invasion Kuwait’’, and ‘‘chemical weapons’’ is presented in Fig. 3B. To get additional
insight into the characteristics of the generated time series, we checked the stationarity
of the variables. In the first place, we performed Augmented Dickey–Fuller (ADF) unit
root tests for stationarity on each time series. From the ADF tests, we conclude that all
the analyzed series are stationary, except for the one corresponding to the variable ‘‘bush
administration’’. To look further into this non-stationary time series we applied the
Zivot-Andrews (ZA) unit root test and concluded that the series is stationary with a
structural break. Note that the variable ‘‘bush administration’’ is ambiguous since it
refers to both the administrations of the 41st and the 43rd presidents of the US. But we
can show that the structural break clearly distinguishes them. On the other hand, the
number of observations corresponding to the first Bush presidency is almost null. That
difference in the time series behavior before and after 2001 is likely the reason why the
series is not stationary unless you count in the structural change that happened around
that time. According to the ZA test, the structural change happened in December 2000.
The results of the ADF and ZA tests are presented in Fig. 4.
• Step 8. Causal relations are learned from the time series by applying any of the causal
structure learning technique described earlier.

The causal graph resulting from applying the described framework to the NYT corpus
on the topic ‘‘Iraq’’ is presented in Fig. 5. The ensemble∩ technique was used in this example
because high precision is desired to only include causal relations with high confidence.
Note, however, that any of the previously described causal learning techniques or other
ensemble approaches could be adopted (e.g., based on a weighted voting scheme).

By analyzing the resulting causal graph it is possible to identify several causal relations
with a clear semantic. For instance, the causal link ‘‘weapons mass destruction’’→
‘‘military action Iraq’’ represents the possible existence of weapons of mass destruction
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Table 2 Event clusters identified during Step 5.

Cluster Salient terms Description

C109 killed, Iraq, American, soldiers, civilians Death reports
C165 against, war, Iraq, opposed, threat Negative connotation reports
C201 attacks, terrorist, Iraq, missile, suicide Terrorist attack reports
C249 attack, Iraq, military, missile, against Military actions
C269 invasion, Iraq, Kuwait, American Kuwait invasion
C550 war, Iraq, led, 2003 Iraq war
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Figure 3 Example of ongoing event time series (A) and term time series (B) associated with the topic
‘‘Iraq’’ extracted from the NYT corpus by the proposed framework.

Full-size DOI: 10.7717/peerjcs.1066/fig-3

in Iraq as a possible reason for initiating military actions. Another causal link between
military actions and the war in Iraq is represented by ‘‘military action Iraq’’→ ‘‘war
Iraq’’. Although these relations should not be automatically interpreted as an actual causal
relation, they offer valuable information on pairs of variables with strong co-occurrence
where one precedes the other. Also, the causal link ‘‘war Iraq’’→ C109, where the variable
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Full-size DOI: 10.7717/peerjcs.1066/fig-4

United Nations Security

C201 war Iraq

C109

Saddam Hussein

C165

C550

chemical biological weapons

weapons mass destruction

military action Iraq

C249

Iraq invasion Kuwait Persian Gulf war United StatesBush administration

C269

Figure 5 Causal graph resulting from applying the ensemble∩ technique over the time series built
from the NYT corpus on the topic ‘‘Iraq’’.

Full-size DOI: 10.7717/peerjcs.1066/fig-5
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C109 represents death reports, offers an intuitively correct causal relation. Other highly
intuitive causal links identified by the framework are ‘‘weapons mass destruction’’
→ ‘‘chemical biological weapons’’ and C201→ C109← C269, with C201 and C269

representing terrorist attack reports and mentions to the Kuwait invasion, respectively.
While not all the causal links identified by the framework are necessarily correct, they

provide useful information on potential causal relations in a domain. The next section
presents an evaluation by domain experts of different casual relations inferred by the
framework by applying the most promising causal structure learning techniques.

Evaluation
The case study presented in the previous section offers initial evidence on the utility of
the proposed framework. However, a systematic evaluation is required to provide stronger
evidence of the effectiveness of the proposed approach. The evaluation methodology
adopted in this work consists of two major evaluation tasks outlined in Fig. 6: (1) an
evaluation with synthetic data from two well-known datasets (TETRAD and CauseMe) and
(2) an evaluation with real-world data generated by the proposed framework (based on the
case study on the topic ‘‘Iraq’’ described earlier). The following two sections describe each
of the evaluation tasks. The first evaluation task addresses the first research question (i.e.,
RQ1. What methods for time-series causality learning are effective in generalized synthetic
data?). The second evaluation task offers evidence to answer the second research question
(i.e., RQ2. Which of the most promising methods for time-series causality learning identified
through RQ1 are also effective on real-world data extracted from news?). Finally, the second
evaluation task also addresses the third research question (i.e., RQ3.What type of variables
extracted from a large corpus of news is effective for building interpretable causal graphs on a
topic under analysis?).

Evaluation on synthetic data
For the experiments carried out with synthetic data, two different sources are used: (1)
TETRAD (Scheines et al., 1998) and (2) CauseMe (Runge et al., 2019a). The simulation
tool TETRAD was used to generate 56 synthetic datasets with different characteristics. In
addition, the eight datasets corresponding to the eight experiments of the nonlinear-VAR
datasets (https://causeme.uv.es/model/nonlinear-VAR/) were selected from the CauseMe
benchmarking platform (causeme.net), resulting in a total of 64 synthetic datasets.

The TETRAD datasets were generated by varying the configuration parameters such as
the time series length (T ∈ {100, 500, 1000, 2000, 3000, 4000, 5000}), number of observed
variables (N ∈ {6, 9, 12, 15, 18, 21, 24, 27, 30}), number of hidden variables (H ∈ {0,
2, 4, 6, 8, 10, 12}), and number of lags (L ∈ {1, 2, 3, 4, 5}). In addition, two settings
were used to build the DAG, namely scale-free DAG (SFDAG) and random forward DAG
(RFDAG). The average performance (across all the evaluated configuration parameters)
of the analyzed state-of-the-art, ensemble, and baseline techniques in terms of precision,
recall, and F1-score is presented in Fig. 7.

The results show that the five state-of-the-art techniques that achieved the best precision
both for RFDAG and SFDAG are (from best to worst) BigVAR, Direct-LiNGAM, PCMCI,
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work and assessed by domain experts). The experiments with synthetic data attempt to identify the most
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Full-size DOI: 10.7717/peerjcs.1066/fig-6

VAR, and PC. The evaluation in terms of recall shows that the best four state-of-the-art
techniques for RFDAG are VAR, PCMCI, Direct-LiNGAM, and PC. In the case of SFDAG,
the four best state-of-the-art techniques are the same, but in a slightly different order,
namelyVAR, PCMCI, PC, andDirect-LiNGAM. Finally, the four state-of-the-art techniques
that achieved the best F1-score for both RFDAG and SFDAG are Direct-LiNGAM, PCMCI,
VAR, and PC. As mentioned earlier, the best four state-of-the-art techniques are combined
into two ensemble techniques called ensemble∩ and ensemble∪. Note that ensemble∩ adds a
causal relation only when all the combined techniques agree on including it and therefore
it tends to favor precision. On the other hand, ensemble∪ adds a causal relation when any
of the combined techniques includes it, and as a consequence, it tends to favor recall. Note
that ensemble∩ is the technique achieving the best F1-score for both RFDAG and SFDAG.

The four state-of-the-art techniques that consistently achieved the best performance on
TETRAD (Direct-LiNGAM, PCMCI, VAR, and PC) are further analyzed on the CauseMe
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Figure 7 Averaged performance in terms of precision, recall and F1-score on the TETRAD datasets for
the evaluated state-of-the-art, ensemble, and baseline techniques. Results are reported both for RFDAG
(left) and SFDAG (right). Confidence intervals are reported at the 95% level.

Full-size DOI: 10.7717/peerjcs.1066/fig-7
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Figure 8 Performance in terms of precision, recall and F1-score on the CauseMe datasets for the eval-
uated state-of-the-art, ensemble, and baseline techniques. Results are reported both for time series of
length 300 (left) and 600 (right), and for graphs with three, five, 10, and 20 nodes.

Full-size DOI: 10.7717/peerjcs.1066/fig-8

datasets. Although BigVAR achieves high precision, its confidence intervals for the other
metrics are very large, pointing out to inconsistent performance, and therefore it was
omitted from the rest of the analysis. The performance achieved by the Random technique
on the CauseMe datasets is also reported for comparison purposes. The eight datasets
selected from the CauseMe benchmarking platform are built in a similar way with different
time series lengths (T ∈ {300, 600}) and number of nodes (N ∈ {3, 5, 10, 20}). The
precision, recall, and F1-score values achieved by the evaluated state-of-the-art, ensemble,
and baseline techniques on the eight datasets are reported in Fig. 8. The charts on the left-
and right-hand sides present the results for T = 300 and T = 600, respectively. Each chart
displays the results for the four analyzed values of N.
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The analysis onCauseMe shows a decrease in precision as the number of nodes increases,
with Direct-LiNGAM and ensemble∩ being the techniques less affected by this loss of
performance. On the other hand, the number of nodes does not have a noticeable impact
on recall. It is worth mentioning that the high recall values achieved by Random are due
to the fact that the ground truth causal graph is sparse and Random adds edges with a
probability of 0.5. It is possible to observe that as the number of nodes increases, the
analysis based on F1-score ranks the state-of-the-art techniques (from best to worst) as
follows: Direct-LiNGAM, VAR, PC, PCMCI, and Random.

The evaluation carried out on the TETRAD and CauseMe datasets provide evidence to
addressRQ1 pointing out to the effectiveness ofDirect-LiNGAM,VAR, PC, and PCMCI for
time-series causality learning in generalized synthetic data. We also observe that ensemble∩
tends to achieve high precision while ensemble∪ tends to achieve high recall.

Evaluation with real-world data
An evaluation is carried out using real-world data generated by the framework based on the
case study on the topic ‘‘Iraq’’ described earlier. Three volunteer domain experts (annotators
from now on) were recruited for an experiment aimed at assessing the existence of causal
relations between pairs of variables extracted by the framework. Two of the annotators had
a Ph.D. in History while the third had a Ph.D. in Political Science. Let T and E be the set
of terms and event clusters from Tables 1 and 2, respectively. Three sets of unordered pairs
of variables of different types (terms and event clusters) were built as follows:

• P{E,E}={{e1,e2} : e1 ∈ E∧e2 ∈ E∧e1 6= e2}.
• P{E,T }={{e,t } : e ∈ E∧ t ∈T }.
• P{T ,T }={{t1,t2} : t1 ∈T ∧ t2 ∈T ∧ t1 6= t2}.

We randomly selected 15 pairs from each of the sets P{E,E} (event-event), P{E,T } (event-
term) and P{T ,T } (term-term), resulting in a total of 45 pairs. Based on the concept of
causality understood by each annotator and having an understanding of the meaning of
the variables by reading the annotation guidelines, the annotators were requested to select
(to the best of their understanding) one of the following options for each pair of variables
v1 and v2:
1. The variables v1 and v2 are causally unrelated (i.e., v1 6→ v2 and v2 6→ v1).
2. The variables v1 and v2 are causally related in both directions (i.e., v1→ v2 and v2→ v1).
3. The variables v1 and v2 are causally related in one direction (i.e., v1→ v2 but v2 6→ v1).
4. The variables v1 and v2 are causally related in the other direction (i.e., v2→ v1 but

v1 6→ v2).
Note that for each of the 45 evaluated pairs {v1,v2} it was possible to derive two Boolean

assessments: (1) v1 causes v2 or v1 does not cause v2 and (2) v2 causes v1 or v2 does not
cause v1. As a result, we obtained a total of 90 Boolean labels from each annotator. After
collecting the list of labels from each annotator, wemeasured the inter-annotator agreement
by computing the Cohen’s Kappa coefficient between each pair of annotators. Since we
were interested in investigating whether different types of variables (events vs. terms)
had a different effect on the analysis, we computed separate coefficients for event-event,
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Table 3 Cohen’s Kappa coefficients among annotators.

Annotator All Eevent-event Event-term Term-term

#1 #2 0.2708 0.1250 0.1667 0.0000
#1 #3 0.2194 0.7945 0.1026 0.0000
#2 #3 −0.0657 0.0426 0.0870 −0.0714

Average 0.1415 0.3207 0.1188 −0.0238

event-terms and term-term pairs. The resulting Cohen’s Kappa coefficients of each type
of pairs and the average value are reported in Table 3. We observe that there tends to be
no agreement between term-term pairs, while the agreement between event-event pairs
is considerably superior to the agreement observed between the other types of pairs. This
points to the important fact that ongoing events offer a better ground for causality analysis
than terms do. However, we observe little agreement among annotators in general, which
indicates that the identification of causal relations is a subjective and difficult problem even
for domain experts.

Due to the lack of a reliable gold-standard ground truth derived from domain experts
to carry out a conclusive evaluation of the analyzed causal structure learning techniques
we built three ground truth approximations as follows:

• Bold Ground Truth: variable v1 causes v2 if and only if at least one annotator indicates
the existence of a causal relation from v1 to v2.
• Moderate Ground Truth: variable v1 causes v2 if and only if the majority of the
annotators (i.e., at least two annotators) agree on the existence of a causal relation from
v1 to v2.
• Conservative Ground Truth: variable v1 causes v2 if and only if the three annotators
agree on the existence of a causal relation from v1 to v2.

The effectiveness of each of the analyzed causal discovery methods based on Bold
Ground Truth, Moderate Ground Truth, and Conservative Ground Truth is reported in
Tables 4, 5 and 6, respectively. As expected, the precision tends to increase as the ground
truth becomes less conservative, while the recall is higher for a more conservative ground
truth. Also, in the same way as in the evaluations carried out with synthetic data, the
highest precision is usually achieved by ensemble∩ (except for Bold Ground Truth), while
the highest recall is always achieved by ensemble∪. This analysis provides evidence to answer
RQ2, indicating that ensemble∩ and ensemble∪ are effective for learning causal relations,
depending on whether the goal is to achieve high precision or high recall, respectively.

Since the inter-annotator agreement for the assessed causal relations reported in Table 3
indicates that event-event relations offer a better ground for causality analysis, we looked
into the performance of each of the analyzed causal structure learning techniques restricted
only to pairs from P{E,E} (i.e., both variables represent event clusters). The results of
this analysis based on Bold Ground Truth, Moderate Ground Truth, and Conservative
Ground Truth are reported in Tables 7, 8 and 9, respectively. It is interesting to note that
by restricting the analysis to variables representing events only, the performance achieved
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Table 4 Methods’ effectiveness on bold ground truth.

Method Accuracy Precision Recall F1-score

Direct-LiNGAM 0.3000 0.6667 0.1194 0.2025
PC 0.4444 0.8400 0.3134 0.4565
PCMCI 0.4556 0.9091 0.2985 0.4494
VAR 0.5000 0.8235 0.4179 0.5545
ensemble∩ 0.2778 0.7500 0.0448 0.0845
ensemble∪ 0.5778 0.8372 0.5373 0.6545

Notes.
The best results are shown in bold.

Table 5 Methods’ effectiveness onmoderate ground truth.

Method Accuracy Precision Recall F1-score

Direct-LiNGAM 0.6889 0.3333 0.1667 0.2222
PC 0.7000 0.4400 0.4583 0.4490
PCMCI 0.7111 0.4545 0.4167 0.4348
VAR 0.6000 0.3235 0.4583 0.3793
ensemble∩ 0.7333 0.5000 0.0833 0.1429
ensemble∪ 0.5667 0.3256 0.5833 0.4179

Notes.
The best results are shown in bold.

Table 6 Methods’ effectiveness on conservative ground truth.

Method Accuracy Precision Recall F1-score

Direct-LiNGAM 0.8000 0.1667 0.2000 0.1818
PC 0.7000 0.1600 0.4000 0.2286
PCMCI 0.7333 0.1818 0.4000 0.2500
VAR 0.6222 0.1471 0.5000 0.2273
ensemble∩ 0.8667 0.2500 0.1000 0.1429
ensemble∪ 0.5444 0.1395 0.6000 0.2264

Notes.
The best results are shown in bold.

by most methods tends to be superior when evaluated on Moderate Ground Truth and
Conservative Ground Truth.

The evaluation carried out with real-world data and domain experts points to two
important findings. In the first place, inter-annotator agreement on causal relations
significantly increases when the variables represent ongoing events rather than general
terms. In the second place, the performance of most methods tends to improve when the
analysis is restricted to ongoing events. Hence, as an answer to RQ3 we conclude that
variables representing ongoing events extracted from a large corpus of news are more
effective for building interpretable causal graphs than variables representing terms.
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Table 7 Methods’ effectiveness for event-event causal relations on Bold Ground Truth.

Method Accuracy Precision Recall F1-score

Direct-LiNGAM 0.2333 0.6000 0.1250 0.2069
PC 0.3667 0.7778 0.2917 0.4242
PCMCI 0.4667 0.9000 0.3750 0.5294
VAR 0.4000 0.7500 0.3750 0.5000
ensemble∩ 0.2333 0.6667 0.0833 0.1481
ensemble∪ 0.5000 0.8000 0.5000 0.6154

Notes.
The best results are shown in bold.

Table 8 Methods’ effectiveness for event-event causal relations onModerate Ground Truth.

Method Accuracy Precision Recall F1-score

Direct-LiNGAM 0.5333 0.4000 0.1538 0.2222
PC 0.6667 0.6667 0.4615 0.5455
PCMCI 0.6333 0.6000 0.4615 0.5217
VAR 0.5667 0.5000 0.4615 0.4800
ensemble∩ 0.6000 0.6667 0.1538 0.2500
ensemble∪ 0.6000 0.5333 0.6154 0.5714

Notes.
The best results are shown in bold.

Table 9 Methods’ effectiveness for event-event causal relations on conservative ground truth.

Method Accuracy Precision Recall F1-score

Direct-LiNGAM 0.6333 0.2000 0.1250 0.1538
PC 0.6333 0.3333 0.3750 0.3529
PCMCI 0.6667 0.4000 0.5000 0.4444
VAR 0.6000 0.3333 0.5000 0.4000
ensemble∩ 0.7000 0.3333 0.1250 0.1818
ensemble∪ 0.5667 0.3333 0.6250 0.4348

Notes.
The best results are shown in bold.

CONCLUSIONS
This article looked into the problem of extracting a causal graph from a news corpus. An
initial evaluation using synthetic data of nine state-of-the-art causal structure learning
techniques allowed us to address RQ1, offering insight into which are the most promising
methods for time-series causality learning. The evaluation with domain experts helped
us to respond to RQ2, by making it possible to further compare the analyzed methods
and to assess the overall performance of the proposed framework using real-world data.
The labeling task carried out by experts offered interesting insights into the problem of
building a ground truth derived from annotators’ assessments. In the first place, we learned
from the evaluation that there tends to be little agreement among annotators in general,
which points to the high subjectivity in causality analysis. However, we also noticed that
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the inter-annotator agreement significantly increases when the variables representing
potential causes and effects refer to ongoing events rather than general terms (n-grams).
We contend that this results from the fact that assessing causal relations between events
is a better-defined problem than assessing causal relations between other variables with
unclear semantics, such as general terms. This finding provides an initial answer to RQ3.

The lack of ground truth for causal discovery is a limitation recurrently discussed in
the literature (Li, Zhang & Cui, 2019; Cheng et al., 2022) and hence the tendency to use
synthetic datasets to evaluate new causal discovery techniques. In this work, we took a
further step, building a ground truth dataset for causal analysis in a real-world domain,
which albeit its limitations, provides a new instrument for measuring the performance of
casual discovery techniques.

The practical implications of this framework can be understood in terms of the analyses
that can be derived from causal graphs obtained empirically. In particular, this approach
helps identify new or unknown relationships associated with a topic or variable of interest
that can offer a new perspective to the problem. Constructing a causal graph could be one
of the first steps in building causal models. By moving from purely predictive models to
causal modeling, we are enriching the level of analysis that could be performed over the
variables and relationships of interest, allowing analysts not only to reason over existing
data but to evaluate the effect of possible interventions or counterfactuals that did not
occur in the observed data. Such analysis is possible because causal modeling allows us
to model the generative process of the data, which leads to more robust and complete
models. These practical applications of this framework can be highly relevant for public
policy makers and social researchers aiming to evaluate cause and effect relations reported
in large text corpora.

While we have evaluated the most salient causal discovery methods from the literature
and merged the most effective ones into two ensemble methods, as part of our future work
we plan to develop a novel causal discovery method from observational data that combines
ideas coming from machine learning and Econometrics. The proposed transformation of
data from news into time series of relevant variables makes it possible to combine data
coming from news with other variables that are typically available as time series (e.g.,
stock market data, socioeconomic indicators, among others), enriching the domain and
providing experts with additional valuable information. This will be explored as part of
our future work.

Also, we plan to integrate the complete framework into a visual tool that will assist users
in identifying relevant variables and exploring potential causal relations from digital media.
The tool interface will allow the user to adjust different parameters to explore the data in
more detail. For instance, the user could decide on the number and type of variables and
causal links displayed in the causal graph, the time granularity of the time series (monthly,
weekly, daily, etc.), and the number of event clusters, among other options. Finally, we plan
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to conduct additional user studies to further evaluate whether the developed tool facilitates
sense-making in complex scenarios by domain experts.
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