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Abstract

Relevance relations constitute the core of information retrieval. Topical ontolo-

gies, such as collaborative webpage classification projects, can provide a basis

for identifying and analyzing such relations. New meaningful relevance rela-

tions can be automatically inferred from these ontologies by composing existing

ones. In this work, several relevance propagation models are analyzed in terms

of complex network theory. Structural properties such as Characteristic path

length, Clustering coefficient and Degree distribution are computed over the

models in order to understand the nature of each underlying network. This

analysis raises interesting points about the Small-world and Scale-free structure

of some relevance propagation models. Moreover, other connectivity and cen-

trality measures are computed to gain additional insight into the topology of

relevance. Finally, the analysis is complemented by providing visualizations of

the k-core decomposition of different relevance propagation models. To illus-

trate the generalizability of the proposed methodology the analysis is carried

out on an ontology from a different domain. The major theoretical implication
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of this analysis is the derivation of new instruments to typify semantic networks

derived from relevance relations. The results can be exploited in a pragmatic

way, as the parameters and properties derived by this analysis can serve as prior

knowledge to algorithms for the automatic or semi-automatic construction of

semantic networks.

Keywords: relevance propagation, topic ontologies, complex networks,

topological analysis

1. Introduction

The notion of relevance is crucial to information retrieval. Ontologies are

commonly used in information retrieval tasks as they are designed to orga-

nize knowledge, helping to capture relevance relations in a simplified manner.

DMOZ1 is a web directory and a special ontology, built collaboratively by users

around the world. The latest version of DMOZ comprises more than 1,000,000

topics arranged hierarchically by taxonomical edges, and complemented with

two different kinds of cross edges, namely “symbolic” and “related” links. Com-

plex network theory provides a comprehensive set of tools for analyzing large

graph representations. In general, the strength and robustness of a network can

be evaluated in terms of metrics that rely on simple concepts, as the number of

connections of a node, the number of connections among the neighbors of a node

or the number of paths that could be established between two nodes. Several

works employ these measures and features to characterize different networks,

as is the case of brain networks [11], peer-to-peer systems [42], characters in

fictional novels [30], and the entire web [10]. As ontologies are frequently repre-

sented by large graphs, complex network theory provides useful tools for their

analysis. New topologies emerge when a basic ontology graph is augmented

with implicit relations, and topological measures allow to characterize these

augmented models.

1The DMOZ archive is hosted at http://dmoz-odp.org/ and is continued by Curlie at

https://curlie.org/.
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Relevance has traditionally been studied from a logical or philosophical per-

spective (e.g., [6]). Also, for years, the notion of relevance has been addressed

from an information retrieval perspective (e.g., [18]). However, to the best of

the authors’ knowledge, relevance has never been analyzed from a topological

perspective.

Our analysis focuses on topological regularities observed in different Rel-

evance Propagation Models (RPM’s) proposed in [52]. In that work several

RPM’s were analyzed qualitatively and quantitatively, evaluating their accu-

racy in terms of human users’ criteria. Later, a study of the DMOZ topology

was presented in [53]. However, this study was limited to the basic DMOZ

graph, without considering relevance propagation. The present work extends

the results reported in [52, 53] by examining various complex network proper-

ties of the resulting RPM’s, such as node degree distributions, local clustering

coefficient, average shortest path length, diameter of the network, among other

specialized metrics. This analysis allows to identify non-trivial regularities and

provides the basis for a better understanding of important notions such as con-

nectivity, topic relevance and semantic similarity, among others. This novel

approach provides a different view on the notion of topical relevance, allowing

to study the multitude of interactions that occur between topics. It offers a new

perspective to analyze computational models that seek to explain how relevance

propagates and how semantic structures form.

The analysis presented in this article provides new tools to the active re-

search area of semantic network construction [12] or expansion [55]. As is the

case with other complex networks, the description of topological properties of

semantic networks such as ontologies or knowledge graphs can be done using

power-laws and other metrics observed in this kind of networks. As a conse-

quence, instead of using average values to characterize different aspects of the

graph, exponents of power laws and other relevant characteristics derived from

a topological analysis as the one presented here can be used to typify the sta-

tistical aspects of the graph. Also, our analysis can guide the design of these

networks or the incorporation of new elements to an existing one. The charac-
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teristics identified in our analysis can help the process of enriching an ontology

or knowledge graph with upcoming data, while at the mean time preserving

several statistical regularities that are observed in any relevance propagation

model.

Manually building large ontologies, knowledge graphs or other semantic net-

works (as the one analyzed here) can be a tedious task. We contend that our

analysis can provide valuable parameters that can be exploited by structure

learning algorithms for the automatic or semi-automatic generation of these

networks [1]. It is worth mentioning that many structure learning algorithms

assume or require prior knowledge on the distribution associated with the struc-

ture of the graph to be inferred. Hence, we anticipate that any algorithm that

attempts to build a semantic network from automatic relevance relation ex-

traction can highly benefit from prior knowledge on structural aspects of the

“network of relevance relations” to be derived. As pointed out by other stud-

ies [48] “structure always affects function”. Hence, a good relevance propagation

model may have to be sensitive to its underlying structure. As a consequence,

the topological analysis reported in this work serves as a key complement to the

comparative studies of RPM’s presented in [52].

This article is organized as follows. Section 2 describes the DMOZ graph,

RPM’s and other related concepts to provide a basis for the remaining sections.

Then, section 3 reviews literature on structural analysis, semantic networks and

other related topics. The main results of this work are reported in section 4.

In the first place, this section provides an overview of the datasets used in our

analysis and the computed RPM’s. It then investigates and discusses several

properties of the DMOZ graph and its derived RPM’s by means of metrics

commonly used in complex network analysis. In particular, it analyzes the

connectivity patterns of the networks, reports centrality measures, explains the

Small-world and Scale-free properties on the RPM’s and provides visualizations

of the graphs’ k-core decomposition and the in- and out-degree distributions.

Section 5 investigates the generalizability of the proposed methodology by pro-

viding a brief analysis on an alternative ontology. Finally, the conclusions and
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possible future research avenues are presented in section 6.

2. Background

In this section we present the notion of topic ontology and describe the basic

structure of the DMOZ graph as a special case of topic ontology. Furthermore,

the notion of relevance propagation is reviewed and illustrated with an example.

Finally, we review measures and tools from complex network theory employed

in the analysis presented in this article.

2.1. Topic Ontologies and the DMOZ graph

A topic ontology is a set of topics connected with different types of relations.

Each topic includes a set of related documents. A well-known example of topic

ontology is the DMOZ project, which is a collaborative effort for classifying

websites into a topical structure. Such a structure results in a big graph or

ontology that contains three kinds of links:

• T: “is-a” links, representing the hierarchical component of the ontology,

• S: non-hierarchical “symbolic” cross links,

• R: “related” cross links, also organized in a non-hierarchical manner.

While the hierarchical component imposes strong constraints on the general

organization of the DMOZ ontology, the “symbolic” and “see-also” connections

loose up these constraints and offer the possibility of integrating the taxonomical

component of DMOZ with more general components. The DMOZ ontology

can be formally characterized as a graph G = (V, E) with a set of vertices V

representing topics and a set of edges E representing the union of the three types

of links (i.e., E = T ∪ S ∪ R). A portion of this graph is illustrated in Figure 1.

2.2. Relevance Propagation Models

The notion of relevance in the context of a web directory such as DMOZ has

been defined and discussed in [52]. According to that work, a topic ti is relevant
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Figure 1: Portion of the DMOZ ontology.

to another topic tj if there is an edge of some type from topic ti to topic tj

in the graph representation of the directory. For instance, in Figure 1, we can

observe an explicit relevance relation between topics “Top / Science / Social

Sciences / Demography and Population Studies” and “Top / Society / Issues /

Immigration”, represented by the red dotted arrow that depicts a “related” link.

The same applies to other explicit relevance relations represented by taxonomic

and symbolic links.

In addition to the relevance relations that are explicitly represented in the

graph, a great number of meaningful relevance relations can be identified by

taking into account paths between certain topics. An example of a meaningful

transitive relation emerges between “Top / Science / Social Sciences” and “Top

/ Society / Issues / Immigration”. This relation is derived from the path leading

from the first topic to the second one by combining taxonomical and “related”

edges.

Figure 2 shows the graphical notation employed to describe non-basic RPM’s.

The source node is represented by a blank circle and the target node by a filled

circle. Arrows represent different types of edges and may stand for explicit or

6



implicit relevance relations. This figure illustrates how implicit relevance rela-

tions can be derived from explicit ones. In this case, a new edge ets results from

composing a symbolic edge es with a taxonomy edge et.

RPM’s can be sparser or denser depending on the criteria applied to derive

implicit relations. Usually, there is a trade-off between the density of an RPM

and the significance of its relevance relations: As more links are established

between topics, the real significance of the arising relations tends to decay. While

RPM’s can be derived in a wide variety of ways from the DMOZ ontology, this

article focuses on studying the RPM’s described in the Analysis section.

Figure 2: Left-hand side: The composition of edges et (taxonomical) and es (symbolic) gives

rise to an implicit edge ets. Right-hand side: Graphical expression of the arising RPM.

2.3. Matrix Representation of Relevance Relations

Relevance relations can be represented by means of Boolean matrices. Each

row or column of a relevance matrix represents a DMOZ topic, and each cell

contains a 1 if there exists a relevance relation between the corresponding row

and column topics, and 0 otherwise. These matrix representations facilitate the

computation of new relevance relations by means of two basic operations:

• Union: Given the relations ρA and ρB , their union, ρA ∪ ρB is computed

as: [A ∨ B], where A and B are the matrix representations of ρA and

ρB , respectively, and the Boolean addition (disjunction) operation ∨ on

matrices is defined as [A ∨B]ij = Aij ∨Bij .

• Composition: Given two relations ρA and ρB , the composition ρA ◦ ρB
can be computed as: [A ⊗ B], where A and B are the matrix represen-
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tations of ρA and ρB , respectively, and the Boolean product operation ⊗

on matrices is defined as [A⊗B]ij =
∨
k(Aik ∧Bkj).

The Boolean product can be repeatedly applied on a relevance matrix to

compute new matrices representing paths of specific lengths. Let I be the iden-

tity matrix and let M be a relevance matrix. Then, for any non-negative integer

n, M(n) represents the relevance matrix derived from M containing paths of

length n, and is computed as follows: M(0) = I, and M(r+1) = M⊗M(r)

Finally, the reflexive-transitive closure of M is computed as follows:

M∗ =

∞∨
r=0

M(r) (1)

Matrix M∗ codifies whether a topic is reachable from another.

2.4. Complex Network analysis

This section reviews the concepts and measures of complex network theory

that we have adopted to analyze the most salient properties of the DMOZ graph

and its associated RPM’s. The main definitions can be found in this section

while a more detailed description and the motivations for each measure are

available as supplementary material.2

2.4.1. Connectivity and centrality measures

We describe next the connectivity and centrality measures used in this work,

for a generic graph G = (V,E), and considering the distance between nodes i

and j, d(i, j), as the shortest path length between these nodes.

• Graph density:

Density(G) =
|E|

|V |(|V | − 1)
(2)

• Diameter: The largest distance between any pair of connected nodes,

considering distance as the length of the shortest path.

2https://github.com/edus1984/Structural-Analysis-of-Relevance-Propagation-Models
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• Characteristic (Average) Path Length (CPL):

l(G) =
1

|V | ∗ (|V | − 1)

∑
i∈V

∑
j∈V \{i}

d(i, j) (3)

• Connectivity length (CL):

D(G) =
|V |(|V | − 1)∑
i,j∈G

1
d(i,j)

, (4)

where we assume the distance between unreachable nodes is∞ and∞−1 =

0.

• Local Clustering Coefficient (for a node i) :

Ci =
|{(j, k) : j, k ∈ Ni; (j, k) ∈ E}|

|Ni|(|Ni| − 1)
, (5)

where

– Ni is the set of neighbors of node i

– (j, k) is an edge between nodes j and k

We use CC to represent the average clustering coefficient of a network.

• Betweenness Centrality:

bci =
∑
u 6=i6=v

σuv(i)

σuv
, (6)

where:

– σuv is the total number of shortest paths from a node u to another

node v

– σuv(i) is the number of shortest paths from node u to node v that

pass through i

• Closeness Centrality:

cli =
1∑

d(j,i)<∞ d(j, i)
(7)
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• Harmonic Centrality:

hci =
∑

d(j,i)<∞,j 6=i

1

d(j, i)
(8)

• Lin’s index for Closeness Centrality:

lini =
|{j : d(j, i) <∞}|2∑
d(j,i)<∞,j 6=i d(j, i)

(9)

2.4.2. Degree distribution

The degree of a node i in an undirected graph is the number of edges between

i and other nodes. In the case of directed graphs, in-degree(i) is the number of

edges from other nodes to i, while out-degree(i) is the number of edges from i

to other nodes. The degree distribution P(m) for undirected graphs is defined as

the probability that a node is linked to m nodes. For the case of directed graphs,

the in-degree distribution Pin(m) and the out-degree distribution Pout(m) are

defined as the probabilities for any node of having m incoming or outgoing links

respectively:

Pin(m) =
Number of nodes with in-degree m

|V |
(10)

Pout(m) =
Number of nodes with out-degree m

|V |
(11)

2.4.3. “Small World” networks

A Small-World network [51, 33] exhibits a low CPL l(G) and high levels of

clustering coefficient. These characteristics turn any node reachable in relatively

few steps from any other node (low CPL), and result in high connectivity for

the entire graph (high clustering coefficient).

2.4.4. Power-law distributions

A Power-law distribution can be modeled with the following probability

distribution function [35]:

P(x) = Cx−α (12)

Networks that exhibit a power-law degree distribution are said to be scale-

free.
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3. Related work

This section reviews related work. In particular, it presents an overview of

literature on complex network theory applied to semantic networks and outlines

some complementary literature on Relevance and Relevance propagation.

Semantic networks are a graphical notation for representing knowledge as a

set of interconnected conceptual entities. They have been applied to represent

data, reveal structure and support navigation, and they have been widely stud-

ied both from the cognitive-science and knowledge-engineering perspectives. On

the one hand, the cognitive-science approach to the study of semantic networks

focuses on understanding how knowledge is organized in the human brain. On

the other hand, the knowledge-engineering perspective puts the emphasis on

analyzing semantic networks built by humans, either individually or collabora-

tively.

The works of Steyvers & Tenenbaum [46], Morais et al. [34] and Mak &

Twitchell [32] constitute examples of the study of semantic networks as complex

networks from the cognitive-science perspective. According to these authors,

complex network theory provides useful tools for the analysis of the organization

of concepts in the human brain. Similarly, the study of how the brain networks

are structurally organized has been an important area of research in cognitive

linguistic, psychology and neuroscience. Different studies have recognized that

brain networks share certain key organizational principles with other complex

networks, such as short path length, high clustering coefficient, hierarchical

structure, and power-law degree distribution [11, 45].

More closely related to our work is the study of semantic networks built

by humans, such as ontologies or knowledge graphs. These semantic networks

are typically built directly by domain experts or elicited from them by knowl-

edge engineers. An early example of the analysis of this kind of networks from

the complex network perspective is presented in [21], which focuses on exam-

ining the ontological part of the Semantic Web. The studied network contains

307,231 nodes and 588,890 arcs and is the result of combining 282 ontologies
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collected from the DAML Ontology Library3. Based on metrics and properties

of the studied network, such as clustering coefficient, average path length and

degree distribution, the authors conclude that the Semantic Web behaves like a

complex system. The analysis is also completed for smaller ontologies, yielding

the conclusion that the same properties can be observed at different scales. A

similar analysis is carried out in [50], where the authors also conclude that the

analyzed ontologies reveal several patterns and regularities typically found in

complex networks. Also, they claim that these ontologies contain a few “focal”

classes that form the conceptual backbone of the defined schema, and many

“peripheral” ones that provide details on the former. Ontologies have also been

studied as complex networks with the goal of helping ontology engineers un-

derstand their structural complexity and evaluate their quality with respect to

modular design principles [43].

Hoser et al. [27] illustrate the benefits of computing centrality and connectiv-

ity metrics on ontologies to gain insight into the importance of certain concepts

and properties of the ontology. Following a similar premise, Zhang et al. [57]

propose an approach for automatic ontology summarization that relies on com-

puting the salience of each RDF sentence in terms of its centrality in the graph.

In doing so, an RDF sentence graph is built and analyzed based on metrics such

as degree centrality, shortest-path-based centrality and eigenvector centrality. A

similar method for building personalized ontology summaries based on metrics

coming from complex network theory is proposed in [36].

Other large semantic networks derived from the Web of Data have been

examined as complex networks revealing their scale-free and small-world na-

ture [20, 24] as well as their community structure [39, 13]. The vulnerability of

the Web of Data from a complex network perspective and different mechanism

for improving its robustness are discussed in [23]. “Folksonomies”, different

forms of social bookmarking, and other types of collaborative knowledge bases

are special forms of semantic networks that can also be studied under the com-

3http://www.daml.org/ontologies/
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plex network perspective, as discussed in [14, 47, 56, 25, 28].

The concept of Relevance is closely related to structural aspects of topical

and semantic networks. In [22] relevance is defined as a measure of the in-

formation conveyed by a document regarding a query. Additionally, Rees &

Saracevic [37] and more recently Saracevic [41] claim that relevance should take

into account concepts such as the previous knowledge of the user and the useful-

ness of the information to the user. Keeping the user as the center of relevance

measures, Barry [4] establishes additional criteria: information content of the

document, the user’s previous knowledge, the user’s preferences, other informa-

tion and sources within the environment, the document sources, the document

as a physical entity, and the user’s situation. Other aspects such as topicality,

novelty, reliability, understandability, and scope are analyzed by Xu & Chen [54].

Hjorland [26] presents a review of relevance in the field of information science.

The concept of Relevance propagation has been applied for different pur-

poses, such as identifying authorities in the Expert finding task [38]. Also, Topic

distillation has benefited from relevance propagation, as shown by Chibane &

Doan [15]. In these works, RPM’s for hypertext document collections are com-

puted in terms of content and link similarities, and the user’s behavior, allowing

to identify authoritative sources. Relevance propagation can be implemented

by means of class evolution in topic ontologies. Such an evolution consists in

adding new documents to the ontology classes. In [49] this idea is employed

to guide focused crawlers. Kim & Candan [29] also apply this idea in a key-

word propagation algorithm for augmenting the description of the entries in a

navigation hierarchy.

4. Analysis

With the purpose of extending the analysis presented in [53], the measures

described in the Background section were applied to multiple DMOZ RPM’s.

Some graphs corresponding to RPM’s proposed in [52] are included, as well as

new graphs derived from them.
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4.1. Dataset

The principal data set comprises the basic DMOZ ontology. The DMOZ

ontology used in our analysis comprises a set of 571,148 topics connected by

571,147 taxonomy links (T ), 545,805 “symbolic” links (S) and 380,264 “related”

links (R).

Table 1: Denomination, expression and number of edges of the DMOZ RPM’s.

Denomination Expression Number of edges

G1 T ∨ S ∨R ∨ I 2,068,364

G2 T ∨ S ∨R ∨RT ∨ I 2,269,866

G3 T ∗ 4,588,580

G4 T ∗ ∨ S ∨R 5,502,581

G5 S∗ 3,817,557

G6 R ∨RT ∨ I 1,301,060

G7 T ∨ S ∨ I 1,688,100

G8 T ∗ ∨ S 5,122,366

G9 S ∨R ∨ I 1,497,217

G10 S ∨R ∨RT ∨ I 1,700,060

G11 T ∗ ⊗ (R ∨ I) 5,657,838

G12 T ∗ ⊗ (R ∨RT ∨ I) 6,547,256

G13 T ∗ ⊗ S∗ 10,141,973

G14 T ∗ ⊗ (S ∨R ∨ I) 7,072,930

G15 (S ∨R ∨ I)⊗ T ∗ 71,443,444

G16 T ∗ ⊗ (S ∨R ∨ I)⊗ T ∗ 170,573,370

G17 T ∗ ⊗ (S ∨R ∨RT ∨ I)⊗ T ∗ 174,534,253

G18 [T ∗ ⊗ (S ∨ I)⊗ T ∗] ∨ [T ∗ ⊗ (R ∨RT ∨ I)] 14,177,359

G19 T ∗ ⊗ (S ∨ I)⊗ T ∗ ⊗ (R ∨RT ∨ I) 16,915,322

G20 T ∗ ∨ S ∨R ∨RT 5,702,391
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The RPM’s in Table 1 are visually represented in Figure 3 using the graphical

convention described in Figure 2. That figure denotes an additional graphical

convention used to represent reflexive-transitive closures of some basic DMOZ

ontology components: the reflexive-transitive closure of T , i.e. T ∗, is represented

by a triangle with solid lines, while for the reflexive-transitive closure of S (S∗),

a triangle with dashed lines is used. The converse of the relation defined by the

R component, i.e. the relations coming from the transpose of R (RT ), is also

represented with a special convention consisting of red dash-dot curves.

Figure 3: Graphical expression of the models of relevance propagation.

4.2. Connectivity and Centrality measures

The next subsections present the topological metrics used in this work to

characterize the structure of the DMOZ graph and the RPM’s. For some cases,

such as Graph Density and Diameter, the complete set of measures are available

as supplementary material.4

4https://github.com/edus1984/Structural-Analysis-of-Relevance-Propagation-Models
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4.2.1. Graph Density and Diameter of RPM’s

The graph density measure is reported in Figure 4. The values for T , S, R

and G (G1) are taken from [53]. The RPM’s are sparse, with a density below

0.01% in most of the cases. The reflexive-transitive closure of T , namely T ∗,

results in a significantly increased density reflected by RPM’s G3, G4, G5 and

G8 with respect to prior models. Higher increases in density are observed when

T ∗ is included with a Boolean product in a model, and even higher densities

result from involving T ∗ on the right-hand side of the product. Models G14 and

G15 represent the Boolean product of T ∗ and the union of the non-hierarchical

components of DMOZ, where T ∗ is on the left- and right-hand side of the

Boolean product, respectively. Note that the density of G15 is one order of

magnitude higher than G14, while G14 already shows an important increase in

terms of density. The densest models are G16 and G17 because they involve T ∗

on both sides of the Boolean product, and the complete DMOZ graph in the

middle, including the backward edges of R for the case of G17. Models G18

and G19 do not exhibit very high densities because their Boolean products are

performed between T ∗ and the basic models S and R, one at a time, but not

simultaneously, as is the case with G16 and G17.

Figure 4: Graph densities of DMOZ RPM’s.

Figure 5 shows the Diameter value for some representative RPM’s. The
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diameters of the basic DMOZ graphs (T , S, R and G1) are described in [53].

The diameter of G3 (T ∗) is 1 given that all the possible paths in that model

have a direct edge, as a result of the nature of a reflexive-transitive closure in

a taxonomy. The same reasoning applies to G5 (S∗). The largest diameters

are associated with R and G7, which are among the sparsest models. It is

interesting to note how the diameter decreases when R is augmented with its

backward edges resulting in model G6. Such diameter decreases from 61 to

41, suggesting that the distance between some nodes can significantly reduce

by only adding the backward edges of R. Note that the same behavior is also

observed for G1 and G2. Apart from T , G3 and G5, models G19 and G13 have

the lowest diameters. The RPM’s with largest diameters are R, G7, G8 and

G9. Even though the high density of some RPM’s can induce higher diameters,

low diameter in sparser models can be a consequence of the existence of non-

co-reachable nodes. Another noticeable phenomenon is the very high increase

in diameter that results from augmenting G3 (T ∗) with S, resulting in G8, and

going from 1 to 58.

Figure 5: Diameters of DMOZ RPM’s.

4.2.2. CPL, CL, Clustering Coefficient and Small-World Networks

Figure 6 shows the corresponding CPL and CL values for the subset of

models with CL lower than 1,000, given that the differences in that measure are
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not visible for greater values, and greater values are not relevant for a visual

comparison. As can be seen in Table 2, models G3, G5 and G13 exhibit low CPL

and very high CL values. This fact is a consequence of the existence of non-co-

reachable nodes. It is also important to highlight the considerable decrease of

CL when the R component is augmented with its backward edges (model G6),

falling in two orders of magnitude, from 4,997 to 76. The CPL and CL of G7,

G8, G9 and G10 are consistent, characterizing these RPM’s as weakly connected

networks. Finally, models G11, G12, G14, G18, G19 and G20 have low values of

CPL and CL, i.e. suggesting that those networks are more connected than the

rest. Particularly, the best connected model according to these measures is G19,

with a CPL of 4.86 and a CL of 9.

Figure 6: CPL and CL of the most representative DMOZ RPM’s according to these measures.

Figure 7 shows charts with the grouped frequencies of CC values for each

RPM. The CC values were grouped into 10 intervals of the same length between

0 and 1, for the purpose of showing how the values are distributed over each

model. Some highlights about the CC values of the basic DMOZ graphs are

provided in [53]. The highest average CC values are those corresponding to the

RPM’s that include the reflexive-transitive closure T ∗ of the taxonomy. In fact,

the average CC is lower than 10% for the RPM’s that do not include it, namely

S, R, G1, G2, G5, G6, G7, G9 and G10. Besides, the RPM’s considered in this

analysis exhibit 0 and 1 as CC while the nodes of the models including T ∗ never
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Table 2: Graph density, diameter, CPL and CL of DMOZ models.

Model Density Diameter CPL CL

T 0.0002% 14 3.6981 222,286

S 0.0003% 33 7.5791 321,849

R 0.0003% 61 16.2653 4,997

G1 0.0006% 45 11.1196 22

G2 0.0007% 32 10.0808 20

G3 0.0014% 1 0.8755 81,199

G4 0.0017% 36 7.4666 15

G5 0.0012% 1 0.8504 100,483

G6 0.0004% 41 11.5456 76

G7 0.0005% 61 19.1825 5,683

G8 0.0016% 58 16.2893 5,683

G9 0.0005% 55 14.3660 129

G10 0.0005% 44 10.8486 48

G11 0.0017% 23 5.5744 14

G12 0.0020% 23 5.7070 12

G13 0.0031% 18 4.2838 1,477

G14 0.0022% 27 5.7619 12

G15 0.0219% - - -

G16 0.0523% - - -

G17 0.0535% - - -

G18 0.0043% 20 5.5607 11

G19 0.0052% 17 4.8597 9

G20 0.0017% 24 7.1998 14

show CC values of 0 or 1. This phenomenon is related to the basic property of a

reflexive-transitive closure of a taxonomy, that connects every node directly to

its descendants. This process does not generate cycles, and turns non-immediate
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descendants into direct neighbors. No edges between direct descendants are

created, as seen in Figure 8. As a consequence, the CC of the parent node will

be greater than 0 taking into account the edges that could arise between its

descendants (children and grandchildren for instance), but will not be equal to

1, given that there are no edges traversing different branches of the taxonomy.

This property holds for all the analyzed models that involve T ∗.

Figure 7: Grouped frequencies for Clustering coefficients of DMOZ RPM’s.

Particularly, in models S, R, G1, G2, G5, G6, G10 most values agglomerate

in the interval between 0 and 0.1. As it should be expected by its structure,

the CC values of G3 lie mostly in the 0.5-0.6 interval. For the case of G12, G14,

G18 and G19, the majority of CC values are in the interval 0.4-0.6. On the

other hand, the values of G4, G8, G13, G15, G17 and G20 are more smoothly
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Figure 8: A regular taxonomy augmented with the edges of the corresponding reflexive-

transitive closure, illustrating the CC value for the parent node ni.

distributed. Another important issue to highlight is the very low number of

nodes with CC values higher than 0.6 in all the RPM’s.

As shown in previous studies [46, 8, 34], well-specified topic networks tend to

group semantically related topics into cohesive communities and to directly or

indirectly connect most of the topics through short meaningful paths. This be-

havior was already reported in our previous study of topic ontology networks [53]

and is also observable in the RPM’s analyzed here. More precisely, according to

Figures 6 and 7, and considering the Average Clustering Coefficient, the CL and

the CPL, the RPM’s that better approximate a small-world network behavior

are G19, G18, G12 and G14, in that order. While the small-world phenomenon

is expected to be present in any good RPM, short distances between topics may

only represent a partial and indirect predictor of the model suitability. This is

due to the absence of a necessary relation between the number of topological

links in a path and the semantic distance between the corresponding topics.

4.3. Degree Distributions and Scale-Free structure

The charts in Figure 9 show in- and out-degree distributions in log-log scale

for a set of representative RPM’s. For instance, the in-degree distribution plots

of the R component and the model G1 -as seen in [53]- and the out-degrees of

R, G1 and G3 indicate a possible power-law behavior. Following this notion,
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the in-degree and out-degree distribution plots of G17 do not exhibit power-law

distributions. Besides, it is important to note that, in contrast to the other

plots in the figure, the in-degree distribution plot for G3 is shown in a linear

scale on both axes. That plot has the purpose of showing a possibly normal

distribution of the in-degrees in G3. As seen in the results of other computed

network measures, this seemingly normal distribution for G3 is the consequence

of the structure of the reflexive-transitive closure of T .

Figure 9: In-degree and Out-degree frequency distributions in log-log scale for R, G1, G3 and

G17.

The slight curvature exhibited by the out-degree plot of G1 in Figure 9, as

also explained in [53], could point out to an exponential rather than power-law

behavior [16]. Such a curvature can be attributed to the taxonomy T , since the

degree distributions for the RPM’s that include that component exhibit such

a shape. Also, the reflexive-transitive closure T ∗ causes linear increases in the

in-degrees and exponential increases for the case of out-degrees in the RPM’s

that include it, stressing this effect on the distributions.

The scaling exponent of each distribution allows a more accurate analysis

of the scale-free behavior of the networks. This exponent is illustrated in Fig-
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ure 10. Most of the RPM’s exhibit in-degree scaling exponents higher than 2,

but the out-degrees have lower values in general. Particularly, models G3, G4

and G5 and all the models beyond G10 exhibit lower values in their out-degree

scaling exponents, and it could be due to the inclusion of T ∗ through Boolean

products. The curvature described previously and the low scaling exponents

in the out-degrees pose exponential distributions as better probabilistic models

than power-law distributions. As stated in [53], the out-degree of R and the in-

degree of S show the clearest power-law behaviors when the scaling exponents

are considered, and the very high scaling exponent in the in-degree of R could

be the effect of an arbitrary process of topic association, where some DMOZ

collaborators added many “related” links to a few topics (e.g. the topic “Top/

Regional/ North America/ United States/ Arts & Entertainment/ Music” is

linked from 2.341 nodes). Exponents associated with the most basic RPM’s,

namely S, R, G1, G2, G6, G7, G9 and G10, are higher than the exponents

associated with the most sophisticated ones.

Figure 10: Scaling exponents of in-degree, out-degree and undirected graph degree distribu-

tions for DMOZ RPM’s.

The edges in every RPM can be seen as non-directional relations between

DMOZ topics, generating undirected graphs that can also be statistically ana-

lyzed. Figure 10 also shows the scaling exponents of the underlying undirected
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graphs for some RPM’s. Models G1 and G2 have scaling exponents greater than

2 and smaller than 3, indicating well-defined means and non-finite variances, as

the most recognized power laws in nature [35]. Particularly, the unique cases of

distributions with finite variance are the in-degree of S and the out-degree of

R, considering their scaling exponents higher than three.

4.4. Visual analysis of centrality and connectivity

The visualizations of the RPM’s were computationally very expensive to ob-

tain, as undirected representations of the complete graphs were represented. To

highlight some interesting facts, Figure 11 presents a visualization of G1 (previ-

ously analyzed in [53]) and other RPM’s using the Large Networks Visualization

tool (LaNet-Vi [2]) to generate visualizations of the undirected graphs associ-

ated with the analyzed models employing a k-core decomposition algorithm [44].

A description of the criteria used to separate cores by the algorithm is available

as supplementary material.5

In the visualization of G1, separated cores and a low overlapping among

them are observable (white gaps among the circles formed by the groups of

nodes). Also, it is possible to distinguish small circles outside the border of the

central core, representing smaller communities of topics. It is possible to observe

differences in the overlapping of cores of G3 and G4. As model G3 corresponds

to the reflexive-transitive closure of T , there are more nodes with intermediate

degrees, and the corresponding image shows a more stressed overlapping of cores.

On the other hand, the participation of components S and R in G4 induces a

smoother structure of the cores.

The four images at the center and bottom of Figure 11 correspond to more

complex RPM’s, all of them including Boolean products of the reflexive-transitive

closure of T and the basic components T and R. Gradually, from model G14

going through models G15 and G18 to G19, a growth in the gap between the

central core and the border circle of the image can be appreciated. Such a gap,

5https://github.com/edus1984/Structural-Analysis-of-Relevance-Propagation-Models
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which will be called “central gap” from now on, can be explained as a result

of the progressive Boolean products involving T ∗ applied to generate the men-

tioned RPM’s. As seen for the density of the corresponding graphs, there is a

considerable difference in the number of edges when T ∗ appears in a Boolean

product on the left-hand side as in G14, or on the right-hand side as in G15, or

on both hands, as in G18 and G19. Particularly when T ∗ is present in the left-

hand side of a Boolean product, edges are added linearly to the model on the

right, but conversely the increase in the number of edges is exponential when

T ∗ is on the right-hand side. This can be observed in the gap emerging in G15,

considering that the only difference between that model and G14 is the order of

appearance of T ∗ in the corresponding Boolean products. The particular struc-

ture of the central gap in G15 reflects a set of peaks in the degree distribution of

that model, since the graphic is much less dense than the one corresponding to

G14. It presents considerably more nodes in the central cores than G18 and G19,

and those nodes are distributed among more separated circles than in G14. The

images of models G18 and G19 denote a bigger central gap than G15, and this

is due to the presence of more nodes with higher degrees. Figure 12 provides

further insights into these questions, showing the cumulative frequencies for the

degree distributions of the four RPM’s analyzed. The particular structure of

the central gap in the k-core decomposition image of G15 corresponds to the

associated plot in this figure, reflecting the absence of some subsets of interme-

diate degrees. Besides, the cumulative frequencies of G18 and G19 show a higher

number of nodes with higher degrees, pointed by the slower growth of the curve

in the plots.

4.5. Connectivity and Centrality of some relevant topics

The analyzed connectivity and centrality measures allow to recognize that

some topics are central across diverse RPM’s. This section identifies a set of

topics that consistently exhibit high values of degree, betweenness centrality,

closeness centrality, harmonic centrality and Lin’s index in most of the gener-

ated RPM’s. The Clustering Coefficient measure does not present significant
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Figure 11: K-core decomposition visualizations of a selection of DMOZ models.

Figure 12: Cumulative Frequencies for degree distributions of G14, G15, G18 and G19 in

log-log scale.

differences for any particular node in the RPM’s, and therefore was not consid-

ered for this analysis. The results are summarized in Table 3.

As can be seen in Table 3 some topics that are central for the basic DMOZ

graphs (e.g. “Adult”) are also central for the derived RPM’s. The high agree-

ment in assigning topic “Regional” the highest value of BC in the majority of the

studied RPM’s lends this topic a relatively central position in the DMOZ ontol-

ogy, when the shortest path length is considered as a basis for centrality. On the
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Table 3: Most central topics of DMOZ RPM’s. The rows correspond to the topics. The

columns are associated with the connectivity and centrality measures considered. Each cell

of the table enumerates the RPM’s where the corresponding topic has the highest value.

Topic Degree Betweenness

centrality

Closeness

centrality

Harmonic

centrality

Lin’s

index

Regional G1,G4,G11,

G12,G14,

G18,G20

G6 G1,G6

Adult G1,G2,G4,

G11,G12,

G14,G18,

G19,G20

Recreation/Travel G6,G10 G2 G2

Science/ Envi-

ronment

R R R

Society/People/

Personal Home-

pages

G11,G12,

G14,G18

G11,G12,

G14,G18,

G19

World/Español/

Artes/Cine

S,G7,

G8,G13

S S

Regional/North

America/United

States/Arts &

Entertainment/

Music

R,G1,

G2,G4

G6,G9,

G10,G11,

G12,G14,

G18,G19,

G20

G4,G19,

G20
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other hand, when the alternative centrality measures involving co-reachability

are taken into account, this topic remains central only for a few models and

measures, while topics “Adult”, “Society/ People/ Personal Homepages” and

“Regional/ North America/ United States/ Arts & Entertainment/ Music” ac-

quire a higher centrality for a considerable part of the RPM’s. The case of

topics “Recreation/ Travel” and “Science/ Environment” is particularly inter-

esting. While the first seems to gain more centrality when the backward edges

of component R are included, as in models G2, G6 and G10, the second remains

more central for the basic component R without its backward edges. Regarding

topic “Regional/ North America/ United States/ Arts & Entertainment/ Mu-

sic”, apart from its high values of Harmonic centrality in some RPM’s, it is

pointed as the node with highest degree in many models.

5. Generalizability

The methodology presented in this work can be applied to any ontology but

it becomes particularly interesting when applied to ontologies that are com-

prised of different types of relations. An example of such an ontology is the

Gene Ontology (GO)6. GO provides structured knowledge about the functions

of genes and gene products. It has been extensively used in the life sciences and

has been continuously constructed and refined by a team of ontology develop-

ers that includes biologists and knowledge representation specialists. The GO

knowledge base contains GO terms that refer to biological processes, molecu-

lar functions and cellular components. These terms are linked by relations of

different kind: “is a”, “part of” and “regulates”.

The GO graph used in our analysis comprises a set of 47,199 GO terms con-

nected by 71,305 “is a” taxonomy links (Tis a) and 7,100 “part of” taxonomy

links (Tpart of). While the GO graph is significantly smaller than the DMOZ

topic ontology, it provides an interesting case for investigating the generalizabil-

6The Gene Ontology is hosted at http://geneontology.org.
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ity of the proposed methodology.

In our analysis different operations were applied to the Tis a and Tpart of

components of the GO graph, resulting in the RPM’s described in table 4.

Table 4: Denomination, expression and number of edges of the GO RPM’s.

Denomination Expression Number of edges

GO1 Tis a ∨ Tpart of 78,405

GO2 T ∗is a 505,236

GO3 T ∗part of 15,503

GO4 T ∗is a ∨ T
∗
part of 520,706

Several topological metrics were computed to characterize the structure of

some of the GO graph’s components and the derived RPM’s. These metrics

are presented in table 5. As can be observed, all the representations are sparse

with the highest density in models that include the Tis a component or its

corresponding reflexive-transitive closure T ∗is a. Note that the density of Tis a

is an order of magnitude higher than that of Tpart of. As can be seen in table 5

all models exhibit a relatively low CPL and CL. It is interesting to note that

the difference in an order of magnitude between CPL and CL for Tis a and GO2

(T ∗is a) is a consequence of the existence of non-coreachable nodes. This results

from the fact that the “is a” hierarchy of GO contains three sub-ontologies.

GO2 and GO3 have diameters of size 1, as is also the case for the reflexive-

transitive closure of the taxonomical component of the DMOZ graph. The

other models exhibit diameters in the range 9-14. Models that incorporate

additional components, such as those resulting from including the “regulates”

relations, might significantly reduce the reported diameters. Regarding the CC

metric, it is possible to observe that the highest values are achieved by those

models that include the reflexive-transitive closure of the denser taxonomical

component Tis a, namely GO2 and GO4.

Figure 13 presents the visualization of the k-core decomposition of the basic
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Table 5: Graph density, diameter, CPL, CL and CC of GO models.

Model Density Diameter CPL CL CC

Tis a 0.0032% 14 3.1898 0.3135 0

Tpart of 0.0003% 10 0.5153 1.9407 0

GO1 0.0035% 14 3.3087 0.3022 0.0053

GO2 0.0227% 1 0.9146 1.0934 0.3659

GO3 0.0007% 1 0.2474 4.0423 0.0399

GO4 0.0234% 9 1.1559 0.8652 0.3502

GO components Tis a and Tpart of as well as the the k-core decomposition

of GO1 and GO4 using LaNet-Vi. It is worth mentioning that for the sake

of completeness we present the visualization of the k-core decomposition for

Tpart of. However, due to the sparsity of the corresponding graph and the

existence of a huge number of isolated components, the algorithm does not

provide a representative visualization. On the other hand, the three separate

components that correspond to the three sub-ontologies of GO can be visually

appreciated in Tis a, GO1 and GO4. It is interesting to appreciate that the

three “is a” hierarchies predominate over the less dense “part of” hierarchy.

Finally, we can observe that the degrees and shell-degrees of the nodes in the

central layers are significantly higher in GO4 as a result of applying the reflexive-

transitive closure to the basic components of GO.

6. Conclusions and Future work

This article addresses the question of how topics relate to each other through

relevance relations forming a complex semantic network. It presents new in-

sights into the notion of relevance by moving from traditional perspectives to

a complex network theory approach. Topological measures of connectivity and

centrality were applied to the underlying graph of each model, namely Density,

Diameter, CPL and Connectivity length. The nodes of each graph were also
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Figure 13: K-core visualizations of GO models.

the objective of local measures of centrality and connectivity, namely Cluster-

ing coefficient, Betweenness centrality, Closeness centrality, Harmonic centrality

and Lin’s index. Also, the degree distributions of each RPM were statistically

and visually analyzed. According to the results obtained from these analyses,

the underlying graphs of the RPM’s display patterns commonly found in other

complex networks. Similar to the conclusion reached in [53] for the DMOZ

basic ontology, we can also state that the RPM’s reveal small-world and scale-

free features. While this work identifies the main topological characteristics of

RPM’s it did not look directly into the questions of what are the factors that

produce a small-world topology or what are the mechanisms responsible for the

emergence of scale-free features in these models. To answer the first question,

we could assume that the small-world property results from the fact that all

knowledge is related in some way, resulting in short relevance-relation paths

between any pair of topics. Answering the second question from a network-

growth perspective [3] requires modeling the network evolution through time

by studying the dynamics of the knowledge engineering process that took place
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in the construction of the topic ontology under analysis. Alternatively, to of-

fer a simple feasible explanation for the observed scale-free topology we could

conjecture that similar to many models of conceptual organization, the topol-

ogy of the analyzed RPM’s relies on the cognitive economy principle [40]. This

principle underlies the hierarchical organization of conceptual knowledge where

concepts with a higher number of semantic relationships are situated on the

upper level of the knowledge representation structure [17]. Also, our analysis

indicates that relations not necessarily coming from the hierarchical structure of

topical ontologies play a key role. Hence, the high out-degree showed by some

topics may, in part, be the result of topic generality (i.e., the topic is relevant to

many descendant subtopics) but it may also be the consequence of other factors

such as topic complexity. This is the case when a topic may be analyzed under

multiple contexts or dimensions and therefore it becomes directly or indirectly

related to several other topics. On the other hand, a high in-degree will be

an indication of the pertinence of the topic to many other topics, either more

general or related ones.

The analysis performed here is carried on the totality of the DMOZ network,

overcoming the limitations that may result from sampling the dataset. The

derived RPM’s have equally weighted edges. An alternative approach would

consist in using different weights for different type of links and to penalize

these weights as paths become longer. The models can also be augmented with

information derived from the content of the topics (e.g., terms and urls from

the indexed webpages). This content can be used to adjust the weights of the

links. The significance of centrality measures requires a prior characterization

of the flow in a network [7]. In the scope of topic ontologies, it involves precise

definitions of the way relevance and meaning are propagated through nodes in

the graph. As a result of such analysis, weighted graphs could be derived. In

this manner, a more appropriate “degree” of relevance could be acquired. This

constitutes a proposal of future work to extend the present article.

Finally, we plan to derive networks of semantically connected topics and

RPM’s from other corpora, such as Wikipedia, and to apply an analysis similar
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to the one introduced in this article. The increasing use of networked knowledge

bases allows us to believe that this methodology will find many applications in

the area of information science.
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