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ABSTRACT
In this paper we describe a framework to uncover potential causal
relations between event mentions from streaming text of news me-
dia. This framework relies on a dataset of manually labeled events
to train a recurrent neural network for event detection. It then
creates a time series of event clusters, where clusters are based on
BERT contextual word embedding representations of the identified
events. Using these time series dataset, we assess four methods
based on Granger causality for inferring causal relations. Granger
causality is a statistical concept of causality that is based on fore-
casting. It states that a cause occurs before the effect, and the cause
produces unique changes in the effect, so past values of the cause
help predict future values of the effect. The four analyzed methods
are the pairwise Granger test, VAR(1), BigVar and SiMoNe. The
framework is applied to the New York Times dataset, which covers
news for a period of 246 months. This preliminary analysis delivers
important insights into the nature of each method, identifies differ-
ences and commonalities, and points out some of their strengths
and weaknesses.

CCS CONCEPTS
•Mathematics of computing → Causal networks; Time series
analysis; • Computing methodologies → Information extrac-
tion.
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1 INTRODUCTION
Prediction and explanation are essential tasks in almost any sci-
entific discipline and inferring causality relations is a major step
towards achieving these tasks. In particular, the use of text data
to predict events is a central theme within the field of machine
learning. Text data collected through digital can be processed using
information extraction techniques to identify mentions of events
to define event variables. These and other relevant variables identi-
fied from external sources can be used to build prediction models.
However, the generation of such models from large volumes of data
often lacks an interpretation that reveals the causal impact among
different variables [28]. While there are some contributions to the
problem of causal modeling within the Computer Science disci-
pline [1, 3, 21], most of the work developed in the area of machine
learning has addressed the problem of “pure prediction”, without
emphasis on causal analysis. On the other hand, although the study
of the concept of causality is a central and long-standing issue in
the field of Econometrics [12], the relatively recent availability of
large volumes of text data opens up new opportunities to conjecture
on possible causality relations among events described in the news
as well as to test them.

This paper analyzes four different methods that allow to uncover
the causal relationship between news events obtained from the
full New York Times archive (NYT). The analyzed methods infer
causality between pair of variables in a time series by taking a
statistical approach. The methods studied are the pairwiseGranger
test [13], VAR(1) [25], BigVar [20] and SiMoNe [4, 5].

As a first step in the analysis, we used a dataset manually labeled
by experts to train a recurrent neural network model (RNN) that
was used to detect additional events on the NYT corpus. Then,
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a time series of event clusters was created on BERT contextual
word embedding representations of the event trigger names [7].
Finally, each of the four methods was applied on the time series of
event clusters to find patterns of correlation that allow to uncover
potential causal relations between the identified events.

2 RELATEDWORK
There are several previousworks that have addressed the problem of
automatically or semi-automatically constructing causal networks
or identifying causal relationships from large volumes of text [6,
11, 22–24]. Probabilistic graphical models [15] represent data and
their dependency relationships, allowing to combine uncertainty
and logical inference through the use of independence restrictions.
Bayesian networks [21] are a kind of probabilistic graphical model
where the graph encoding random variables and their conditional
dependencies is directed and acyclic. The methods traditionally
applied for the inference of graph structures are usually based on
constraints [27], based on scores [10] or a combination of both [18].

In the field of Econometrics the technique known as Granger
Causality test [12] is based on two principles: (1) a cause occurs
before the effect, and (2) the cause produces unique changes in
the effect, so past values of the cause help predict future values
of the effect. In the case of structural models, different procedures
have been developed to implement Granger’s test, mostly based
on extensions of the VAR model [14, 26]. A core idea in these
approaches is the identification of Granger causal relations between
variables with the possibility of using the “cause” to forecast values
of the “effect” [9, 19]. These contributions focus only on quantitative
data. Here we extend the application of this approach to relations
among events, aiming to detect a network of causal links among
them as in [2], although using the aforementioned methods.

3 A FRAMEWORK FOR THE ANALYSIS OF
CAUSAL RELATIONS

3.1 Event Detection
The analyzed methods rely on a dataset of manually labeled events
and a dataset of events automatically detected by an RNN model,
to which we refer to as E𝐿 and E𝐷 , respectively. We briefly outline
here how these datasets were created (a detailed description can
be found in [17]). The E𝐿 dataset contains 2200 news extracts from
the NYT archive associated with three episodes of real-world crises:
the Mexican peso crisis of 1994, the Russian financial crisis of 1998,
and the Asian financial crisis of 1997. Each of the news extracts was
analyzed and labeled by four users that employed a consensus-based
approach to identify event triggers (verbs or nouns that most clearly
express the occurrence of the events). The resulting labeled dataset
contains 94 event trigger names (represented by unique lemmas)
and 2828 event mentions (total number of event occurrences).

The RNN model was trained using 2000 labeled news extracts
while the remaining 200 labeled extracts were used to test the model.
The labeling of the 2000 news extracts used for training was assisted
by a simple active learning tool. It is worth mentioning that the
RNN model developed for event detection combines state-of-the art
features, such as BERT embeddings to define contextual word and
contextual sentence embeddings, and achieves highly competitive
results as reported in [17]. The code for the RNN model, as well

as the dataset are made available to the research community for
reproducibility and data reuse.1

The E𝐷 dataset consists of the event mentions predicted by the
RNN model. Only the 94 event trigger names identified in E𝐿 were
considered but the full NYT archive was used, resulting in a total of
21,449,746 event mentions covering a period of 246 months (from
January 1987 to June 2007).

3.2 Event Clustering and Time Series Creation
We consider only the lowercase version of the event trigger names
(the Spacy library was used for lemmatization). Since different
event trigger names were associated with the same (or similar)
type of event (e.g., rise and increase) we decided to group event
trigger names that represented semantically similar events into
a cluster represented by one event variable. To achieve this, we
first generated BERT contextual word embeddings [7]. We used the
sum of the last four hidden unit layers as the embedding for each
word because, as shown in [7], this sum provides one of the best
performance while maintaining a relative short embedding size (768
dimensions). Thenwe applied the DBSCAN clustering technique [8]
on the contextual word embedding representations of the event
trigger names. The minimum cluster size was set to two and cosine
similarity was used to compare instances. Lastly, to avoid large
clusters with mixed semantics, we set a low threshold value for two
instances to be considered similar (epsilon = 0.15). As a result, we
obtained 1222 clusters of event trigger names and considered each
of these clusters as an event variable. To facilitate interpretation
and visualization of the graphs, we limited the analysis only to
those event trigger names that were mentioned more than 15 times
in the dataset. This resulted in 94 different event trigger names and
44 clusters. Hence, the number of event variables considered in
the reported analysis is 44, with clusters containing more than one
event trigger names represented by one of those names.

After completing the clustering and filtering stages, we built
two monthly time series, from E𝐿 and E𝐷 to which we refer to
as 𝜖𝐿 and 𝜖𝐷 , respectively. Since the number of event variables is
44 and the NYT dataset spans 246 months, the dimension of both
time series is 44 × 246. For each time series, the ith event variable
is represented as 𝐸𝑉𝑖 = {𝐸𝑉𝑖,1, 𝐸𝑉𝑖,2, ..., 𝐸𝑉𝑖,246}, where 𝐸𝑉𝑖, 𝑗 is the
number of mentions of the 𝑖𝑡ℎ event variable in the 𝑗𝑡ℎ month. To
compute 𝐸𝑉𝑖, 𝑗 in 𝜖𝐿 we searched for each of the event trigger names
associated with the 𝑖𝑡ℎ event variable occurring in the E𝐿 dataset
during the 𝑗𝑡ℎ month. The 𝜖𝐷 time series was computed from E𝐷

in the same way.2

3.3 Inference Methodologies
In this paper we assume the definition of causality introduced in
Econometrics by the Nobel Prize winner Clive Granger [12]. Given
two time series corresponding to the values of two variables, 𝑋 and
𝑌 , 𝑋 is said to Granger-cause 𝑌 if (1) the values of 𝑋 precede those
of 𝑌 , and (2) the values of 𝑋 allow to forecast the values of 𝑌 .

In this sense, causality is associated with the capability of fore-
casting values of 𝑌 based on past values of 𝑋 . In our case, where
1The code is available at http://cs.uns.edu.ar/∼mmaisonnave/resources/ED_code/ and
the dataset is available at http://cs.uns.edu.ar/∼mmaisonnave/resources/ED_data/.
2The code is available at https://cs.uns.edu.ar/∼mmaisonnave/resources/TSE_code/
and the time series at https://cs.uns.edu.ar/∼mmaisonnave/resources/TSE_data/.
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the variables represent events, the intuition is that when an event
causes another (e.g., crisis causes deficit ), past values of the time
series associated with one event variable will have unique informa-
tion that would help to forecast the other. In this paper we extend
this to the case of several variables [16]. This amounts, according
to [13], to running statistical 𝐹 tests on the lagged coefficients of
an 𝑋 variable, for the same number of lags in 𝑌 .

The main potential issue with this approach on many variables,
not ordered a priori, is that evaluating Granger-causal relations
between pairs of variables may yield too many causal relations that
might be, with high probability, spurious. The alternative is to test
a system of equations, in the style of VAR models (Vector Auto
Regression) [25], where𝑋 is now a vector of variables,𝐴 the matrix
of coefficients of the system of equations, b is a vector of constants
and 𝜀 a vector of perturbations, distributed normally around 0:

𝑋𝑡 = 𝑋𝑡−1A + b + 𝜀𝑡 , 𝑡 ∈ N.
This is not without disadvantages, ensuing from the dimensionality
problem of aggregating all the possible relations and the corre-
sponding lags (the values of 𝑡 ) in each equation of the system.

The next sensible step is thus to keep the system but penalize
the addition of new variables in each equation. Penalization, or
regularization, is introduced to generate more stable, and more
interpretable models, avoiding overfitting and producing models
less sensitive to the noise in our data. Penalization in this context
means that when the positive impact in forecasting introduced by
a variable is small, the increase could be due to statistical noise
rather than a true causal relation. Therefore, we introduce penal-
ization to consider the most robust links only. We follow here two
different, although essentially similar, penalization techniques. On
one hand, BigVar3 [20], and on the other SiMoNe4 [4, 5]. Both
postulate a VAR(1) model (i.e. a one-period lag) and deem causal
those variables that are statistically significant.

4 RESULTS
We run four processes on our dataset. In the first place, we run
pairwise Granger tests with 4 lags. The results, shown on Figure 1
and 2 for 𝜖𝐿 and 𝜖𝐷 , respectively, and in Table 1, yield a dense
network of relations. Then, we estimate a VAR(1) model, which
provides a sparser graph, although with still a large number of
edges. We can reasonably hint that some of those relations are still
spurious. So, finally, we run two estimations of the VAR(1) model,
with the penalties imposed byBigVar and SiMoNe, respectively. In
the former case we use a basic penalization on the coefficients of the
matrix 𝐴, assuming a forecast horizon of one period. In the case of
SiMoNe we choose the best model (i.e. the graph) according to an
information criterion (BIC), penalizing the structure of connections
among nodes and not the nodes themselves. This technique requires
imposing a network structure by an a priori version 𝑃 of matrix 𝐴.

With both BigVar and SiMoNe we obtain sparser but not iden-
tical graphs. This is because the selection of non-zero coefficients
is not independent of the method of penalization applied.

We also looked into the question of how similar the inferred
causal structures are. Consider two causal structures represented
by the graphs 𝐺1 = (𝑁𝐸

1 , 𝐸
𝐶
1 ) and 𝐺2 = (𝑁𝐸

2 , 𝐸
𝐶
2 ) where 𝑁

𝐸
𝑖
and

3https://CRAN.R-project.org/package=BigVAR
4https://CRAN.R-project.org/package=simone

Granger VAR(1) BigVar SiMoNe
𝜖𝐿 𝜖𝐷 𝜖𝐿 𝜖𝐷 𝜖𝐿 𝜖𝐷 𝜖𝐿 𝜖𝐷

273 538 135 188 40 21 17 167
Table 1: Number of relations (edges) in causality structures
inferred from 𝜖𝐿 and 𝜖𝐷 .

𝐸𝐶
𝑖
represent the set of nodes (event clusters) and edges (causal

relations), respectively, in graph 𝐺𝑖 for 𝑖 = 1, 2, with 𝑁𝐸
1 = 𝑁𝐸

2 (i.e.,
the causal relations are defined on the same set of event clusters).
We use Jaccard similarity, computed as Jaccard(𝐸𝐶1 , 𝐸

𝐶
2 ) = |𝐸𝐶1 ∩

𝐸𝐶2 |/|𝐸
𝐶
1 ∪𝐸

𝐶
2 |, to measure the similarity between𝐺1 and𝐺2. Table 2

presents the Jaccard similarities computed between each pair of
structures obtained by the analyzed methods.

Granger VAR(1) BigVar SiMoNe
𝜖𝐿 𝜖𝐷 𝜖𝐿 𝜖𝐷 𝜖𝐿 𝜖𝐷 𝜖𝐿 𝜖𝐷

Granger 1 1 0.172 0.093 0.068 0.016 0.018 0.055
VAR(1) 1 1 0.048 0.005 0 0.134
BigVar 1 1 0.096 0.022
SiMoNe 1 1

Table 2: Jaccard similarity between sets of relations (edges)
in causality structures inferred from 𝜖𝐿 and 𝜖𝐷 .

5 DISCUSSION AND FUTUREWORK
The analysis we carried out should be understood as a first step
towards the goal of inferring causal relations among events detected
in news text streams. The results found at this point are crucially
dependent on tools chosen for carrying out the task. It is rather
evident that the relations inferred are not robust and vary according
to the estimation technique applied.

The VAR procedure seems appropriate to the task of detecting
Granger causality in a set of clusters of events. This is also the
case of the further step of penalizing some elements of the model
to mitigate the dimensionality problem of estimating models with
many variables and many lags, even with only a subset of the
possible clusters of events. But BigVar and SiMoNe, the tools used
to implement the penalization, differ in the nature of the elements
that become penalized. The different results, indicated by the low
Jaccard similarity indexes among the outcomes of the different
techniques point towards the existence of different causal structures
underlying the same set class of events. The penalization used by
each method uncovers a distinct kind of Granger causal relation.
All together, they provide a rich picture of the relationship among
events, providing ways to forecast future ones in terms of past and
current data in the news.

The next step in the research agenda reported here involves
the development of criteria to select the most appropriate penal-
ization strategy according to the data analyzed. A possibility to
be explored is to penalize both the coefficients in the matrix and
the network structure. The goal is to obtain sparse causal graphs,
yielding intuitively acceptable cause-effect relations.
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Figure 1: Causality structures inferred from 𝜖𝐿 . From left to right: Granger, VAR(1), BigVar and SiMoNe.

Figure 2: Causality structures inferred from 𝜖𝐷 . From left to right: Granger, VAR(1), BigVar and SiMoNe.
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